Suppr超能文献

一种用于显著目标检测的多阶段细化网络。

A Multistage Refinement Network for Salient Object Detection.

作者信息

Zhang Lihe, Wu Jie, Wang Tiantian, Borji Ali, Wei Guohua, Lu Huchuan

出版信息

IEEE Trans Image Process. 2020 Jan 3. doi: 10.1109/TIP.2019.2962688.

Abstract

Deep convolutional neural networks (CNNs) have been successfully applied to a wide variety of problems in computer vision, including salient object detection. To accurately detect and segment salient objects, it is necessary to extract and combine high-level semantic features with low-level fine details simultaneously. This is challenging for CNNs because repeated subsampling operations such as pooling and convolution lead to a significant decrease in the feature resolution, which results in the loss of spatial details and finer structures. Therefore, we propose augmenting feedforward neural networks by using the multistage refinement mechanism. In the first stage, a master net is built to generate a coarse prediction map in which most detailed structures are missing. In the following stages, the refinement net with layerwise recurrent connections to the master net is equipped to progressively combine local context information across stages to refine the preceding saliency maps in a stagewise manner. Furthermore, the pyramid pooling module and channel attention module are applied to aggregate different-region-based global contexts. Extensive evaluations over six benchmark datasets show that the proposed method performs favorably against the state-of-the-art approaches.

摘要

深度卷积神经网络(CNN)已成功应用于计算机视觉中的各种问题,包括显著目标检测。为了准确检测和分割显著目标,有必要同时提取高级语义特征并将其与低级精细细节相结合。这对CNN来说具有挑战性,因为诸如池化和卷积等重复的下采样操作会导致特征分辨率显著降低,从而导致空间细节和更精细结构的丢失。因此,我们提出通过使用多阶段细化机制来增强前馈神经网络。在第一阶段,构建一个主网络以生成一个粗略的预测图,其中缺少大多数详细结构。在接下来的阶段,配备与主网络具有逐层循环连接的细化网络,以逐步跨阶段组合局部上下文信息,从而以阶段方式细化先前的显著图。此外,金字塔池化模块和通道注意力模块被应用于聚合基于不同区域的全局上下文。在六个基准数据集上进行的广泛评估表明,所提出的方法优于当前的先进方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验