Xu Hengxin, Yang Lei, Zhao Shengya, Tao Shan, Tian Xinran, Liu Kun
College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China.
College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
Sensors (Basel). 2025 Feb 11;25(4):1064. doi: 10.3390/s25041064.
Three-dimensional object detection using LiDAR has attracted significant attention due to its resilience to lighting conditions and ability to capture detailed geometric information. However, existing methods still face challenges, such as a high proportion of background points in the sampled point set and limited accuracy in detecting distant objects. To address these issues, we propose semantic-guided proposal sampling-RCNN (SPS-RCNN), a multi-stage detection framework based on point-voxel fusion. The framework comprises three components: a voxel-based region proposal network (RPN), a keypoint sampling stream (KSS), and a progressive refinement network (PRN). In the KSS, we propose a novel semantic-guided proposal sampling (SPS) method, which increases the proportion of foreground points and enhances sensitivity to outliers through multilevel sampling that integrates proposal-based local sampling and semantic-guided global sampling. In the PRN, a cascade attention module (CAM) is employed to aggregate features from multiple subnets, progressively refining region proposals to improve detection accuracy for medium- and long-range objects. Comprehensive experiments on the widely used KITTI dataset demonstrate that SPS-RCNN improves detection accuracy and exhibits enhanced robustness across categories compared to the baseline.
使用激光雷达进行三维目标检测因其对光照条件的适应性以及捕捉详细几何信息的能力而备受关注。然而,现有方法仍面临挑战,例如采样点集中背景点比例高以及检测远距离目标时精度有限。为解决这些问题,我们提出了语义引导提议采样区域卷积神经网络(SPS-RCNN),这是一种基于点体素融合的多阶段检测框架。该框架由三个部分组成:基于体素的区域提议网络(RPN)、关键点采样流(KSS)和渐进细化网络(PRN)。在KSS中,我们提出了一种新颖的语义引导提议采样(SPS)方法,该方法通过整合基于提议的局部采样和语义引导的全局采样的多级采样,增加了前景点的比例并提高了对异常值的敏感性。在PRN中,采用了级联注意力模块(CAM)来聚合来自多个子网的特征,逐步细化区域提议以提高对中远距离目标的检测精度。在广泛使用的KITTI数据集上进行的综合实验表明,与基线相比,SPS-RCNN提高了检测精度,并在各类别中表现出更强的鲁棒性。