Arsalan Muhammad, Haider Adnan, Choi Jiho, Park Kang Ryoung
Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 04620, Korea.
J Pers Med. 2022 Jan 18;12(2):124. doi: 10.3390/jpm12020124.
Morphological attributes of human blastocyst components and their characteristics are highly correlated with the success rate of in vitro fertilization (IVF). Blastocyst component analysis aims to choose the most viable embryos to improve the success rate of IVF. The embryologist evaluates blastocyst viability by manual microscopic assessment of its components, such as zona pellucida (ZP), trophectoderm (TE), blastocoel (BL), and inner cell mass (ICM). With the success of deep learning in the medical diagnosis domain, semantic segmentation has the potential to detect crucial components of human blastocysts for computerized analysis. In this study, a sprint semantic segmentation network (SSS-Net) is proposed to accurately detect blastocyst components for embryological analysis. The proposed method is based on a fully convolutional semantic segmentation scheme that provides the pixel-wise classification of important blastocyst components that help to automatically check the morphologies of these elements. The proposed SSS-Net uses the sprint convolutional block (SCB), which uses asymmetric kernel convolutions in combination with depth-wise separable convolutions to reduce the overall cost of the network. SSS-Net is a shallow architecture with dense feature aggregation, which helps in better segmentation. The proposed SSS-Net consumes a smaller number of trainable parameters (4.04 million) compared to state-of-the-art methods. The SSS-Net was evaluated using a publicly available human blastocyst image dataset for component segmentation. The experimental results confirm that our proposal provides promising segmentation performance with a Jaccard Index of 82.88%, 77.40%, 88.39%, 84.94%, and 96.03% for ZP, TE, BL, ICM, and background, with residual connectivity, respectively. It is also provides a Jaccard Index of 84.51%, 78.15%, 88.68%, 84.50%, and 95.82% for ZP, TE, BL, ICM, and background, with dense connectivity, respectively. The proposed SSS-Net is providing a mean Jaccard Index (Mean JI) of 85.93% and 86.34% with residual and dense connectivity, respectively; this shows effective segmentation of blastocyst components for embryological analysis.
人类囊胚各组成部分的形态学特征及其特性与体外受精(IVF)成功率高度相关。囊胚成分分析旨在选择最具活力的胚胎以提高IVF成功率。胚胎学家通过手动显微镜评估囊胚的组成部分,如透明带(ZP)、滋养外胚层(TE)、囊胚腔(BL)和内细胞团(ICM)来评估囊胚活力。随着深度学习在医学诊断领域的成功,语义分割有潜力检测人类囊胚的关键组成部分以进行计算机分析。在本研究中,提出了一种快速语义分割网络(SSS-Net)来准确检测囊胚成分以进行胚胎学分析。所提出的方法基于全卷积语义分割方案,该方案提供了对重要囊胚成分的逐像素分类,有助于自动检查这些成分的形态。所提出的SSS-Net使用快速卷积块(SCB),它将非对称内核卷积与深度可分离卷积相结合以降低网络的总体成本。SSS-Net是一种具有密集特征聚合的浅层架构,有助于更好地进行分割。与现有方法相比,所提出的SSS-Net消耗的可训练参数数量更少(404万)。使用公开可用的人类囊胚图像数据集对SSS-Net进行成分分割评估。实验结果证实,我们的方案分别在ZP、TE、BL、ICM和背景的分割上提供了有前景的性能,其Jaccard指数分别为82.88%、77.40%、88.39%、84.94%和96.03%,具有残差连接;对于ZP、TE、BL、ICM和背景,其Jaccard指数分别为84.51%、78.15%、88.68%、84.50%和95.82%,具有密集连接。所提出的SSS-Net在具有残差连接和密集连接时,平均Jaccard指数(Mean JI)分别为85.93%和86.34%;这表明该方法能有效地分割囊胚成分以进行胚胎学分析。