Suppr超能文献

基于区块链哈希算力的数据查询机制在物联网中的应用。

Data Query Mechanism Based on Hash Computing Power of Blockchain in Internet of Things.

机构信息

School of Computer and Software, Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science & Technology, Nanjing 210044, China.

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China.

出版信息

Sensors (Basel). 2019 Dec 30;20(1):207. doi: 10.3390/s20010207.

Abstract

In the IoT (Internet of Things) environment, smart homes, smart grids, and telematics constantly generate data with complex attributes. These data have low heterogeneity and poor interoperability, which brings difficulties to data management and value mining. The promising combination of blockchain and the Internet of things as BCoT (blockchain of things) can solve these problems. This paper introduces an innovative method DCOMB (dual combination Bloom filter) to firstly convert the computational power of bitcoin mining into the computational power of query. Furthermore, this article uses the DCOMB method to build blockchain-based IoT data query model. DCOMB can implement queries only through mining hash calculation. This model combines the data stream of the IoT with the timestamp of the blockchain, improving the interoperability of data and the versatility of the IoT database system. The experiment results show that the random reading performance of DCOMB query is higher than that of COMB (combination Bloom filter), and the error rate of DCOMB is lower. Meanwhile, both DCOMB and COMB query performance are better than MySQL (My Structured Query Language).

摘要

在物联网 (IoT) 环境中,智能家居、智能电网和远程信息处理技术不断产生具有复杂属性的数据。这些数据具有低异质性和较差的互操作性,这给数据管理和价值挖掘带来了困难。区块链和物联网的有前景的结合体 BCoT(区块链的物联网)可以解决这些问题。本文介绍了一种创新的方法 DCOMB(双组合 Bloom 过滤器),首先将比特币挖掘的计算能力转换为查询的计算能力。此外,本文使用 DCOMB 方法构建基于区块链的物联网数据查询模型。DCOMB 可以仅通过挖掘哈希计算来执行查询。该模型将物联网的数据流与区块链的时间戳相结合,提高了数据的互操作性和物联网数据库系统的通用性。实验结果表明,DCOMB 查询的随机读取性能高于 COMB(组合 Bloom 过滤器),并且 DCOMB 的错误率更低。同时,DCOMB 和 COMB 查询性能均优于 MySQL(My Structured Query Language)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a725/6982918/edc6a81c49e9/sensors-20-00207-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验