Suppr超能文献

DNN-MVL:基于深度神经网络多视图学习的水坝安全监测系统中恢复块缺失数据方法

DNN-MVL: DNN-Multi-View-Learning-Based Recover Block Missing Data in a Dam Safety Monitoring System.

作者信息

Mao Yingchi, Zhang Jianhua, Qi Hai, Wang Longbao

机构信息

College of Computer and Information, Hohai University, Nanjing 211100, China.

出版信息

Sensors (Basel). 2019 Jun 30;19(13):2895. doi: 10.3390/s19132895.

Abstract

Many sensor nodes have been widely deployed in the physical world to gather various environmental information, such as water quality, earthquake, and huge dam safety. Due to the limitation in the batter power, memory, and computational capacity, missing data can occur at arbitrary sensor nodes and time slots. In extreme situations, some sensors may lose readings at consecutive time slots. The successive missing data takes the side effects on the accuracy of real-time monitoring as well as the performance on the data analysis in the wireless sensor networks. Unfortunately, existing solutions to the missing data filling cannot well uncover the complex non-linear spatial and temporal relations. To address these problems, a DNN (Deep Neural Network) multi-view learning method (DNN-MVL) is proposed to fill the successive missing readings. DNN-MVL mainly considers five views: global spatial view, global temporal view, local spatial view, local temporal view, and semantic view. These five views are modeled with inverse distance of weight interpolation, bidirectional simple exponential smoothing, user-based collaborative filtering, mass diffusion-based collaborative filtering with the bipartite graph, and structural embedding, respectively. The results of the five views are aggregated to a final value in a multi-view learning algorithm with DNN model to obtain the final filling readings. Experiments on large-scale real dam deformation data demonstrate that DNN-MVL has a mean absolute error about 6.5%, and mean relative error 21.4%, and mean square error 8.17% for dam deformation data, outperforming all of the baseline methods.

摘要

许多传感器节点已广泛部署在物理世界中,以收集各种环境信息,如水质量、地震和大坝安全等。由于电池电量、内存和计算能力的限制,任意传感器节点和时隙都可能出现数据缺失的情况。在极端情况下,一些传感器可能会在连续的时隙中丢失读数。连续的数据缺失会对无线传感器网络的实时监测准确性以及数据分析性能产生负面影响。不幸的是,现有的数据缺失填充解决方案无法很好地揭示复杂的非线性时空关系。为了解决这些问题,提出了一种深度神经网络(DNN)多视图学习方法(DNN-MVL)来填充连续缺失的读数。DNN-MVL主要考虑五个视图:全局空间视图、全局时间视图、局部空间视图、局部时间视图和语义视图。这五个视图分别采用加权插值的反距离、双向简单指数平滑、基于用户的协同过滤、基于二分图的质量扩散协同过滤和结构嵌入进行建模。在具有DNN模型的多视图学习算法中,将五个视图的结果聚合为一个最终值,以获得最终的填充读数。对大规模真实大坝变形数据的实验表明,对于大坝变形数据,DNN-MVL的平均绝对误差约为6.5%,平均相对误差为21.4%,均方误差为8.17%,优于所有基线方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b419/6651365/70ca6895fdfa/sensors-19-02895-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验