Suppr超能文献

相似文献

1
Design and Control of a Polycentric Knee Exoskeleton Using an Electro-Hydraulic Actuator.
Sensors (Basel). 2019 Dec 30;20(1):211. doi: 10.3390/s20010211.
3
Design and Control of a Series-Parallel Elastic Actuator for a Weight-Bearing Exoskeleton Robot.
Sensors (Basel). 2022 Jan 29;22(3):1055. doi: 10.3390/s22031055.
4
An improved method combined SMC and MLESO for impedance control of legged robots' electro-hydraulic servo system.
ISA Trans. 2022 Nov;130:598-609. doi: 10.1016/j.isatra.2022.03.009. Epub 2022 Mar 16.
6
Position and torque tracking: series elastic actuation versus model-based-controlled hydraulic actuation.
IEEE Int Conf Rehabil Robot. 2011;2011:5975456. doi: 10.1109/ICORR.2011.5975456.
8
Adaptive interaction torque-based AAN control for lower limb rehabilitation exoskeleton.
ISA Trans. 2022 Sep;128(Pt A):184-197. doi: 10.1016/j.isatra.2021.10.009. Epub 2021 Oct 13.
9
Design and motion control of exoskeleton robot for paralyzed lower limb rehabilitation.
Front Neurosci. 2024 Feb 21;18:1355052. doi: 10.3389/fnins.2024.1355052. eCollection 2024.
10
Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation.
ISA Trans. 2021 Mar;109:218-228. doi: 10.1016/j.isatra.2020.10.008. Epub 2020 Oct 12.

引用本文的文献

1
A Bionic Knee Exoskeleton Design with Variable Stiffness via Rope-Based Artificial Muscle Actuation.
Biomimetics (Basel). 2025 Jul 1;10(7):424. doi: 10.3390/biomimetics10070424.
2
Anti-disturbance control design of Exoskeleton Knee robotic system for rehabilitative care.
Heliyon. 2024 Mar 31;10(9):e28911. doi: 10.1016/j.heliyon.2024.e28911. eCollection 2024 May 15.
3
Design and Optimization of Lower Limb Rehabilitation Exoskeleton with a Multiaxial Knee Joint.
Biomimetics (Basel). 2023 Apr 14;8(2):156. doi: 10.3390/biomimetics8020156.
4
Evaluating Knee Mechanisms for Assistive Devices.
Front Neurorobot. 2022 May 30;16:790070. doi: 10.3389/fnbot.2022.790070. eCollection 2022.
5
Sensors and Actuation Technologies in Exoskeletons: A Review.
Sensors (Basel). 2022 Jan 24;22(3):884. doi: 10.3390/s22030884.
6
Research on Control Method of the Power System of Stepping-Type Anchoring Equipment.
Sensors (Basel). 2021 Oct 27;21(21):7123. doi: 10.3390/s21217123.
7
Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
Sensors (Basel). 2021 Jun 11;21(12):4037. doi: 10.3390/s21124037.
8
Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators.
Sensors (Basel). 2021 May 14;21(10):3432. doi: 10.3390/s21103432.
9
A Kinematic Model of a Humanoid Lower Limb Exoskeleton with Hydraulic Actuators.
Sensors (Basel). 2020 Oct 27;20(21):6116. doi: 10.3390/s20216116.

本文引用的文献

1
Gait disorders in adults and the elderly : A clinical guide.
Wien Klin Wochenschr. 2017 Feb;129(3-4):81-95. doi: 10.1007/s00508-016-1096-4. Epub 2016 Oct 21.
2
Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies.
Med Eng Phys. 2016 Apr;38(4):317-25. doi: 10.1016/j.medengphy.2016.01.010. Epub 2016 Feb 26.
3
Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy.
Curr Phys Med Rehabil Rep. 2014 Sep;2(3):184-195. doi: 10.1007/s40141-014-0056-z.
5
Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II.
IEEE Int Conf Rehabil Robot. 2011;2011:5975499. doi: 10.1109/ICORR.2011.5975499.
6
Biomechanical considerations in the design of lower limb exoskeletons.
IEEE Int Conf Rehabil Robot. 2011;2011:5975366. doi: 10.1109/ICORR.2011.5975366.
7
A bio-robotic leg orthosis for rehabilitation and mobility enhancement.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5030-3. doi: 10.1109/IEMBS.2009.5333581.
8
Design of a compliantly actuated exo-skeleton for an impedance controlled gait trainer robot.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:189-93. doi: 10.1109/IEMBS.2006.259397.
9
Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation.
IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):379-86. doi: 10.1109/tnsre.2007.903919.
10
Gender differences in three dimensional gait analysis data from 98 healthy Korean adults.
Clin Biomech (Bristol). 2004 Feb;19(2):145-52. doi: 10.1016/j.clinbiomech.2003.10.003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验