Lenardi Cristina, Mayer Justin, Faraone Gabriele, Cardoso Jonathan, Marom Sarita, Modi Ritika, Podestà Alessandro, Kadkhodazadeh Shima, Di Vece Marcel
Interdisciplinary Centre for Nanostructured Materials and Interfaces (CIMaINa) and Physics Department "Aldo Pontremoli" , University of Milan , Via Celoria 16 , Milan 20133 , Italy.
DTU Nanolab , Technical University of Denmark , Kongens Lyngby DK-2800 , Denmark.
Langmuir. 2020 Feb 4;36(4):939-947. doi: 10.1021/acs.langmuir.9b02993. Epub 2020 Jan 22.
Decorating thin-film solar cells with plasmonic nanoparticles is being pursued in order to improve device efficiency through increased scattering and local field enhancement. Gold nanoparticles are particularly interesting due to their chemical inertness and plasmon resonance in the visible range of the spectrum. In this work, gold nanoparticles fabricated by a gas aggregation nanoparticle source and embedded in a-Si (a commercial solar cell material) are studied using X-ray photoelectron spectroscopy, transmission electron microscopy, electron energy-loss spectroscopy, and energy-dispersive X-ray spectroscopy. The formation of gold silicide around the nanoparticles is investigated, as it has important consequences for the optical and electronic properties of the structures. Different from previous studies, in which the silicide formation is observed for gold nanoparticles and thin films grown on top of crystalline silicon or silica, it is found that silicide formation is largely enhanced around the nanoparticles, owing to their increased surface/volume ratio. A detailed gold silicide formation mechanism is presented based on the results, and strategies for optimizing the design of plasmonically enhanced solar cells with gold nanoparticles encapsulated in a-Si are discussed.
为了通过增加散射和增强局部场来提高器件效率,人们正在研究用等离子体纳米颗粒装饰薄膜太阳能电池。由于金纳米颗粒的化学惰性及其在光谱可见光范围内的等离子体共振,它们特别引人关注。在这项工作中,使用X射线光电子能谱、透射电子显微镜、电子能量损失谱和能量色散X射线谱对由气体聚集纳米颗粒源制备并嵌入非晶硅(一种商用太阳能电池材料)中的金纳米颗粒进行了研究。研究了纳米颗粒周围硅化金的形成,因为它对结构的光学和电子性质有重要影响。与之前在晶体硅或二氧化硅上生长金纳米颗粒和薄膜时观察到硅化物形成的研究不同,发现由于纳米颗粒表面/体积比的增加,其周围的硅化物形成大大增强。基于这些结果,提出了详细的金硅化物形成机制,并讨论了优化嵌入非晶硅中的金纳米颗粒的等离子体增强太阳能电池设计的策略。