Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada
Clinical Epidemiology Program, The Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
BMJ Open. 2020 Jan 7;10(1):e034060. doi: 10.1136/bmjopen-2019-034060.
People 65 years and older represent the fastest growing segment of the surgical population. Older age is associated with doubling of risk when undergoing emergency general surgery (EGS) procedures and often coexists with medical complexity and considerations of end-of-life care, creating prognostic and decisional uncertainty. Combined with the time-sensitive nature of EGS, it is challenging to gauge perioperative risk and ensure that clinical decisions are aligned with the patient values. Current preoperative risk prediction models for older EGS patients have major limitations regarding derivation and validation, and do not address the specific risk profile of older patients. Accurate and externally validated models specific to older patients are needed to inform care and decision making.
We will derive, internally and externally validate a multivariable model to predict 30-day mortality in EGS patients >65 years old. Our derivation sample will be individuals enrolled in the National Surgical Quality Improvement Program (NSQIP) database between 2012 and 2016 having 1 of 7 core EGS procedures. Postulated predictor variables have been identified based on previous research, clinical and epidemiological knowledge. Our model will be derived using logistic regression penalised with elastic net regularisation and ensembled using bootstrap aggregation. The resulting model will be internally validated using k-fold cross-validation and bootstrap validation techniques and externally validated using population-based health administrative data. Discrimination and calibration will be reported at each step.
Ethics for NSQIP data use was obtained from the Ottawa Hospital Research Ethics Board; external validation will use routinely collected anonymised data legally exempt from research ethics review. The final risk score will be published in a peer-reviewed journal. We plan to further disseminate the model as an online calculator or application for clinical use. Future research will be required to test the clinical application of the final model.
65 岁及以上人群代表了手术人群中增长最快的部分。老年人接受紧急普通外科(EGS)手术的风险增加一倍,并且常常伴有医疗复杂性和临终关怀的考虑,这增加了预后和决策的不确定性。加上 EGS 的时间敏感性,评估围手术期风险并确保临床决策与患者价值观保持一致具有挑战性。目前针对老年 EGS 患者的术前风险预测模型在推导和验证方面存在重大局限性,并且不能解决老年患者的特定风险概况。需要针对老年患者的准确和经过外部验证的模型来提供信息以指导护理和决策。
我们将推导出一个多变量模型,用于预测年龄在 65 岁以上的 EGS 患者 30 天死亡率,对其进行内部和外部验证。我们的推导样本将是在 2012 年至 2016 年期间在国家外科质量改进计划(NSQIP)数据库中注册的患有 7 种核心 EGS 手术之一的个体。基于先前的研究、临床和流行病学知识,确定了假设的预测变量。我们的模型将使用逻辑回归进行推导,并使用弹性网正则化进行惩罚,然后使用引导聚合进行集成。使用 K 折交叉验证和引导验证技术对所得模型进行内部验证,并使用基于人群的健康管理数据进行外部验证。在每个步骤都将报告区分度和校准度。
使用安大略省渥太华医院研究伦理委员会获得了 NSQIP 数据使用的伦理许可;外部验证将使用常规收集的匿名数据,这些数据在法律上免于进行研究伦理审查。最终风险评分将发表在同行评审的期刊上。我们计划进一步将模型作为在线计算器或应用程序用于临床。需要进一步研究来测试最终模型的临床应用。