Suppr超能文献

何时以及如何在随机临床试验中使用多重插补来处理缺失数据——附流程图的实用指南。

When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts.

机构信息

The Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Department of Cardiology, Holbæk Hospital, Holbæk, Denmark.

出版信息

BMC Med Res Methodol. 2017 Dec 6;17(1):162. doi: 10.1186/s12874-017-0442-1.

Abstract

BACKGROUND

Missing data may seriously compromise inferences from randomised clinical trials, especially if missing data are not handled appropriately. The potential bias due to missing data depends on the mechanism causing the data to be missing, and the analytical methods applied to amend the missingness. Therefore, the analysis of trial data with missing values requires careful planning and attention.

METHODS

The authors had several meetings and discussions considering optimal ways of handling missing data to minimise the bias potential. We also searched PubMed (key words: missing data; randomi*; statistical analysis) and reference lists of known studies for papers (theoretical papers; empirical studies; simulation studies; etc.) on how to deal with missing data when analysing randomised clinical trials.

RESULTS

Handling missing data is an important, yet difficult and complex task when analysing results of randomised clinical trials. We consider how to optimise the handling of missing data during the planning stage of a randomised clinical trial and recommend analytical approaches which may prevent bias caused by unavoidable missing data. We consider the strengths and limitations of using of best-worst and worst-best sensitivity analyses, multiple imputation, and full information maximum likelihood. We also present practical flowcharts on how to deal with missing data and an overview of the steps that always need to be considered during the analysis stage of a trial.

CONCLUSIONS

We present a practical guide and flowcharts describing when and how multiple imputation should be used to handle missing data in randomised clinical.

摘要

背景

缺失数据可能严重影响随机临床试验的推论,特别是如果缺失数据处理不当。缺失数据引起的潜在偏差取决于导致数据缺失的机制,以及应用于纠正缺失的分析方法。因此,对存在缺失值的试验数据进行分析需要仔细规划和关注。

方法

作者们多次开会讨论,考虑了处理缺失数据的最佳方法,以最大程度地降低潜在偏差。我们还在 PubMed 上搜索了(关键词:缺失数据;随机;统计分析)和已知研究的参考文献列表,以获取关于如何在分析随机临床试验时处理缺失数据的论文(理论论文;实证研究;模拟研究等)。

结果

在分析随机临床试验的结果时,处理缺失数据是一项重要但困难且复杂的任务。我们考虑如何在随机临床试验的规划阶段优化缺失数据的处理,并推荐可能防止因不可避免的缺失数据引起的偏差的分析方法。我们考虑了最佳最差和最差最好敏感性分析、多重插补和完全信息最大似然的优缺点。我们还提供了处理缺失数据的实用流程图,并概述了在试验分析阶段始终需要考虑的步骤。

结论

我们提供了一个实用的指南和流程图,描述了在随机临床试验中何时以及如何使用多重插补来处理缺失数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c46/5717805/60432538516f/12874_2017_442_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验