文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

何时以及如何在随机临床试验中使用多重插补来处理缺失数据——附流程图的实用指南。

When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts.

机构信息

The Copenhagen Trial Unit, Centre for Clinical Intervention Research, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Department of Cardiology, Holbæk Hospital, Holbæk, Denmark.

出版信息

BMC Med Res Methodol. 2017 Dec 6;17(1):162. doi: 10.1186/s12874-017-0442-1.


DOI:10.1186/s12874-017-0442-1
PMID:29207961
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5717805/
Abstract

BACKGROUND: Missing data may seriously compromise inferences from randomised clinical trials, especially if missing data are not handled appropriately. The potential bias due to missing data depends on the mechanism causing the data to be missing, and the analytical methods applied to amend the missingness. Therefore, the analysis of trial data with missing values requires careful planning and attention. METHODS: The authors had several meetings and discussions considering optimal ways of handling missing data to minimise the bias potential. We also searched PubMed (key words: missing data; randomi*; statistical analysis) and reference lists of known studies for papers (theoretical papers; empirical studies; simulation studies; etc.) on how to deal with missing data when analysing randomised clinical trials. RESULTS: Handling missing data is an important, yet difficult and complex task when analysing results of randomised clinical trials. We consider how to optimise the handling of missing data during the planning stage of a randomised clinical trial and recommend analytical approaches which may prevent bias caused by unavoidable missing data. We consider the strengths and limitations of using of best-worst and worst-best sensitivity analyses, multiple imputation, and full information maximum likelihood. We also present practical flowcharts on how to deal with missing data and an overview of the steps that always need to be considered during the analysis stage of a trial. CONCLUSIONS: We present a practical guide and flowcharts describing when and how multiple imputation should be used to handle missing data in randomised clinical.

摘要

背景:缺失数据可能严重影响随机临床试验的推论,特别是如果缺失数据处理不当。缺失数据引起的潜在偏差取决于导致数据缺失的机制,以及应用于纠正缺失的分析方法。因此,对存在缺失值的试验数据进行分析需要仔细规划和关注。

方法:作者们多次开会讨论,考虑了处理缺失数据的最佳方法,以最大程度地降低潜在偏差。我们还在 PubMed 上搜索了(关键词:缺失数据;随机;统计分析)和已知研究的参考文献列表,以获取关于如何在分析随机临床试验时处理缺失数据的论文(理论论文;实证研究;模拟研究等)。

结果:在分析随机临床试验的结果时,处理缺失数据是一项重要但困难且复杂的任务。我们考虑如何在随机临床试验的规划阶段优化缺失数据的处理,并推荐可能防止因不可避免的缺失数据引起的偏差的分析方法。我们考虑了最佳最差和最差最好敏感性分析、多重插补和完全信息最大似然的优缺点。我们还提供了处理缺失数据的实用流程图,并概述了在试验分析阶段始终需要考虑的步骤。

结论:我们提供了一个实用的指南和流程图,描述了在随机临床试验中何时以及如何使用多重插补来处理缺失数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c46/5717805/4bcdd924855e/12874_2017_442_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c46/5717805/60432538516f/12874_2017_442_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c46/5717805/4bcdd924855e/12874_2017_442_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c46/5717805/60432538516f/12874_2017_442_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c46/5717805/4bcdd924855e/12874_2017_442_Fig2_HTML.jpg

相似文献

[1]
When and how should multiple imputation be used for handling missing data in randomised clinical trials - a practical guide with flowcharts.

BMC Med Res Methodol. 2017-12-6

[2]
Are missing data adequately handled in cluster randomised trials? A systematic review and guidelines.

Clin Trials. 2014-10

[3]
Handling missing data in patient-level cost-effectiveness analysis alongside randomised clinical trials.

Appl Health Econ Health Policy. 2005

[4]
Handling of Missing Outcome Data in Acute Stroke Trials: Advantages of Multiple Imputation Using Baseline and Postbaseline Variables.

J Stroke Cerebrovasc Dis. 2018-12

[5]
Handling trial participants with missing outcome data when conducting a meta-analysis: a systematic survey of proposed approaches.

Syst Rev. 2015-7-23

[6]
Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level.

BMC Med Res Methodol. 2018-8-28

[7]
Missing continuous outcomes under covariate dependent missingness in cluster randomised trials.

Stat Methods Med Res. 2017-6

[8]
A review of the handling of missing longitudinal outcome data in clinical trials.

Trials. 2014-6-19

[9]
Multiple imputation methods for bivariate outcomes in cluster randomised trials.

Stat Med. 2016-9-10

[10]
Consequences of handling missing data for treatment response in osteoarthritis: a simulation study.

Osteoarthritis Cartilage. 2012-3-19

引用本文的文献

[1]
Translation, adaptation and measurement properties of the muscle-strengthening exercise questionnaire among university students in Indonesia.

BMJ Open. 2025-9-2

[2]
Short-term versus long-term psychotherapy for borderline personality disorder: a protocol for an individual patient data pooled analysis of two randomised clinical trials.

BMJ Open. 2025-9-2

[3]
Development and validation of an interpretable multi-task model to predict outcomes in patients with rhabdomyolysis: a multicenter retrospective cohort study.

EClinicalMedicine. 2025-8-21

[4]
Paediatric Autism Communication Therapy (PACT) versus management as usual in autistic children: a protocol for a Danish pragmatic, national, randomised clinical trial: DAN-PACT.

Trials. 2025-8-29

[5]
Return to normal activity after abdominal surgery: a pre-planned secondary analysis of a randomised controlled trial across seven low- and middle-income countries.

BMC Surg. 2025-8-29

[6]
Long-Term Outcomes After Cardiac Arrest: Protocol for the Extended Follow-Up Sub-Study of the STEPCARE Trial.

Acta Anaesthesiol Scand. 2025-10

[7]
Characteristics of Australian and New Zealand osteopaths who treat patients presenting with non-musculoskeletal complaints: outcomes from two practice-based research networks.

Chiropr Man Therap. 2025-8-23

[8]
Longer Single-Session Interventions May Not Be Better: Evidence From Two Randomized Controlled Trials With Online Workers Facing Mental-Health Struggles.

Clin Psychol Sci. 2025-8-17

[9]
Socioeconomic inequalities in infant mortality in Colombia: a nationwide cohort study during 10 years.

BMJ Glob Health. 2025-8-21

[10]
An Examination of Training Quality and Provider Outcomes Across Two Generations of Train-the-Trainer.

Adm Policy Ment Health. 2025-8-21

本文引用的文献

[1]
Cherry-picking by trialists and meta-analysts can drive conclusions about intervention efficacy.

J Clin Epidemiol. 2017-8-24

[2]
A systematic survey of the methods literature on the reporting quality and optimal methods of handling participants with missing outcome data for continuous outcomes in randomized controlled trials.

J Clin Epidemiol. 2017-8

[3]
Multiple outcomes and analyses in clinical trials create challenges for interpretation and research synthesis.

J Clin Epidemiol. 2017-6

[4]
Simple randomization did not protect against bias in smaller trials.

J Clin Epidemiol. 2017-4

[5]
Industry sponsorship and research outcome.

Cochrane Database Syst Rev. 2017-2-16

[6]
Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods.

BMC Med Res Methodol. 2014-11-21

[7]
Comparison of results from different imputation techniques for missing data from an anti-obesity drug trial.

PLoS One. 2014-11-19

[8]
Handling missing data in RCTs; a review of the top medical journals.

BMC Med Res Methodol. 2014-11-19

[9]
Reanalyses of randomized clinical trial data.

JAMA. 2014-9-10

[10]
Bias due to lack of patient blinding in clinical trials. A systematic review of trials randomizing patients to blind and nonblind sub-studies.

Int J Epidemiol. 2014-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索