Suppr超能文献

AtDAT1是拟南芥中D-氨基酸刺激乙烯产生的关键酶。 (注:原文中“. ”处信息缺失,推测为拟南芥Arabidopsis thaliana ,完整准确译文需结合完整原文信息)

AtDAT1 Is a Key Enzyme of D-Amino Acid Stimulated Ethylene Production in .

作者信息

Suarez Juan, Hener Claudia, Lehnhardt Vivien-Alisa, Hummel Sabine, Stahl Mark, Kolukisaoglu Üner

机构信息

Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.

出版信息

Front Plant Sci. 2019 Dec 12;10:1609. doi: 10.3389/fpls.2019.01609. eCollection 2019.

Abstract

D-Enantiomers of proteinogenic amino acids (D-AAs) are found ubiquitously, but the knowledge about their metabolism and functions in plants is scarce. A long forgotten phenomenon in this regard is the D-AA-stimulated ethylene production in plants. As a starting point to investigate this effect, the accession Landsberg (L) got into focus as it was found defective in metabolizing D-AAs. Combining genetics and molecular biology of T-DNA insertion lines and natural variants together with biochemical and physiological approaches, we could identify AtDAT1 as a major D-AA transaminase in . loss-of-function mutants and accessions with defective alleles were unable to produce the metabolites of D-Met, D-Ala, D-Glu, and L-Met. This result corroborates the biochemical characterization, which showed highest activity of AtDAT1 using D-Met as a substrate. Germination of seedlings in light and dark led to enhanced growth inhibition of mutants on D-Met. Ethylene measurements revealed an increased D-AA stimulated ethylene production in these mutants. According to initial working models of this phenomenon, D-Met is preferentially malonylated instead of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). This decrease of ACC degradation should then lead to the increase of ethylene production. We could observe a reciprocal relation of malonylated methionine and ACC upon D-Met application and significantly more malonyl-methionine in mutants. Unexpectedly, the malonyl-ACC levels did not differ between mutants and wild type. With AtDAT1, the first central enzyme of plant D-AA metabolism was characterized biochemically and physiologically. The specific effects of D-Met on ACC metabolism, ethylene production, and plant development of mutants unraveled the impact of AtDAT1 on these processes; however, they are not in full accordance to previous working models. Instead, our results imply the influence of additional factors or processes on D-AA-stimulated ethylene production, which await to be uncovered.

摘要

蛋白质氨基酸的D-对映体(D-氨基酸)广泛存在,但关于它们在植物中的代谢和功能的了解却很少。在这方面,一个长期被遗忘的现象是植物中D-氨基酸刺激乙烯的产生。作为研究这种效应的起点,Landsberg(L)种质受到关注,因为它被发现代谢D-氨基酸存在缺陷。将T-DNA插入系和自然变异体的遗传学与分子生物学与生化和生理学方法相结合,我们可以确定AtDAT1是拟南芥中的一种主要D-氨基酸转氨酶。功能缺失突变体和具有缺陷等位基因的种质无法产生D-蛋氨酸、D-丙氨酸、D-谷氨酸和L-蛋氨酸的代谢产物。这一结果证实了生化特性,即AtDAT1以D-蛋氨酸为底物时活性最高。在光照和黑暗条件下幼苗的萌发导致D-蛋氨酸对突变体的生长抑制增强。乙烯测量结果显示,这些突变体中D-氨基酸刺激的乙烯产生增加。根据这一现象的初始工作模型,D-蛋氨酸优先被丙二酰化,而不是乙烯前体1-氨基环丙烷-1-羧酸(ACC)。ACC降解的减少应该会导致乙烯产量的增加。在施用D-蛋氨酸后,我们可以观察到丙二酰化蛋氨酸和ACC之间的相互关系,并且在突变体中丙二酰-蛋氨酸明显更多。出乎意料的是,突变体和野生型之间的丙二酰-ACC水平没有差异。通过AtDAT1,从生化和生理学角度对植物D-氨基酸代谢的第一个关键酶进行了表征。D-蛋氨酸对ACC代谢、乙烯产生和突变体植物发育的特定影响揭示了AtDAT1对这些过程的影响;然而,它们并不完全符合先前的工作模型。相反,我们的结果暗示了其他因素或过程对D-氨基酸刺激的乙烯产生的影响,有待进一步揭示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0977/6921899/ffb2442f8e83/fpls-10-01609-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验