Suppr超能文献

通过探索拟南芥的自然变异发现一种新型氨基酸消旋酶。

Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana.

作者信息

Strauch Renee C, Svedin Elisabeth, Dilkes Brian, Chapple Clint, Li Xu

机构信息

Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081; Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695;

Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907;

出版信息

Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11726-31. doi: 10.1073/pnas.1503272112. Epub 2015 Aug 31.

Abstract

Plants produce diverse low-molecular-weight compounds via specialized metabolism. Discovery of the pathways underlying production of these metabolites is an important challenge for harnessing the huge chemical diversity and catalytic potential in the plant kingdom for human uses, but this effort is often encumbered by the necessity to initially identify compounds of interest or purify a catalyst involved in their synthesis. As an alternative approach, we have performed untargeted metabolite profiling and genome-wide association analysis on 440 natural accessions of Arabidopsis thaliana. This approach allowed us to establish genetic linkages between metabolites and genes. Investigation of one of the metabolite-gene associations led to the identification of N-malonyl-D-allo-isoleucine, and the discovery of a novel amino acid racemase involved in its biosynthesis. This finding provides, to our knowledge, the first functional characterization of a eukaryotic member of a large and widely conserved phenazine biosynthesis protein PhzF-like protein family. Unlike most of known eukaryotic amino acid racemases, the newly discovered enzyme does not require pyridoxal 5'-phosphate for its activity. This study thus identifies a new d-amino acid racemase gene family and advances our knowledge of plant d-amino acid metabolism that is currently largely unexplored. It also demonstrates that exploitation of natural metabolic variation by integrating metabolomics with genome-wide association is a powerful approach for functional genomics study of specialized metabolism.

摘要

植物通过特殊代谢产生多种低分子量化合物。发现这些代谢物产生的途径是一项重大挑战,目的是利用植物王国中巨大的化学多样性和催化潜力为人类所用,但这项工作常常因需要首先鉴定出感兴趣的化合物或纯化参与其合成的催化剂而受到阻碍。作为一种替代方法,我们对440份拟南芥自然种质进行了非靶向代谢物谱分析和全基因组关联分析。这种方法使我们能够建立代谢物与基因之间的遗传联系。对其中一种代谢物 - 基因关联的研究导致了N - 丙二酰 - D - 别异亮氨酸的鉴定,以及发现了一种参与其生物合成的新型氨基酸消旋酶。据我们所知,这一发现首次对广泛保守的吩嗪生物合成蛋白PhzF样蛋白家族的真核成员进行了功能表征。与大多数已知的真核氨基酸消旋酶不同,新发现的酶的活性不需要磷酸吡哆醛。因此,这项研究鉴定了一个新的D - 氨基酸消旋酶基因家族,并推进了我们对目前 largely unexplored的植物D - 氨基酸代谢的认识。它还表明,通过将代谢组学与全基因组关联相结合来利用自然代谢变异是一种用于特殊代谢功能基因组学研究的强大方法。

相似文献

4
The genetics of plant metabolism.植物代谢遗传学
Nat Genet. 2006 Jul;38(7):842-9. doi: 10.1038/ng1815. Epub 2006 Jun 4.

引用本文的文献

2
Genetic basis and selection of glyceollin elicitation in wild soybean.野生大豆中大豆抗毒素诱导的遗传基础与选择
Front Plant Sci. 2024 Feb 28;15:1240981. doi: 10.3389/fpls.2024.1240981. eCollection 2024.
5
Plant biochemical genetics in the multiomics era.多组学时代的植物生化遗传学。
J Exp Bot. 2023 Aug 17;74(15):4293-4307. doi: 10.1093/jxb/erad177.

本文引用的文献

5
MAWBP and MAWD inhibit proliferation and invasion in gastric cancer.MAWBP 和 MAWD 抑制胃癌的增殖和侵袭。
World J Gastroenterol. 2013 May 14;19(18):2781-92. doi: 10.3748/wjg.v19.i18.2781.
10
Drug discovery targeting amino acid racemases.针对氨基酸消旋酶的药物发现
Chem Rev. 2011 Nov 9;111(11):6919-46. doi: 10.1021/cr2000702. Epub 2011 Sep 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验