Li Tongfei, Li Sulin, Liu Qianyu, Yin Jingwen, Sun Dongmei, Zhang Mingyi, Xu Lin, Tang Yawen, Zhang Yiwei
Jiangsu Key Laboratory of New Power Batteries Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China.
Jiangsu Optoelectronic Functional Materials and Engineering Laboratory School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China.
Adv Sci (Weinh). 2019 Dec 1;7(1):1902371. doi: 10.1002/advs.201902371. eCollection 2020 Jan.
Exploring cost-effective and high-performance bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of paramount importance for the advancement of H production technology, yet remains a huge challenge. Herein, a simple electrospinning-pyrolysis strategy is developed to directly immobilize uniform NiCo nanoparticles into a hierarchical branched architecture constructed by in situ formed N-doped carbon-nanotube-grafted carbon nanofibers. The elaborate construction of such hybrid hierarchical architecture can effectively modulate the electronic structure of the active sites, enlarge the exposure of active sites, and facilitate the electron transfer and mass diffusion, favoring both the HER and OER. As a result, the optimized catalyst requires relatively low overpotentials of 114 and 243 mV for HER and OER, respectively, to deliver a current density of 10 mA cm in 0.1 m KOH electrolyte. When employed as a bifunctional catalyst for overall water splitting, the resultant catalyst shows a low cell voltage of 1.57 V to achieve a current density of 10 mA cm, along with an impressive stability without noticeable attenuation even after 27 h. This work presents a successful demonstration in optimizing the electrocatalytic performance of Ni-based bifunctional electrocatalysts by simultaneously considering modulation of electronic structure, hybridization with carbon substrate, and nanostructuring through a facile synthetic strategy, which provides a new avenue to the design of a rich variety of robust transition-metal-based electrocatalysts for large-scale water electrolysis.
探索用于析氢反应(HER)和析氧反应(OER)的具有成本效益和高性能的双功能电催化剂对于制氢技术的进步至关重要,但仍然是一个巨大的挑战。在此,开发了一种简单的静电纺丝-热解策略,将均匀的NiCo纳米颗粒直接固定在由原位形成的N掺杂碳纳米管接枝碳纳米纤维构建的分级分支结构中。这种混合分级结构的精心构建可以有效地调节活性位点的电子结构,扩大活性位点的暴露,并促进电子转移和质量扩散,有利于HER和OER。结果,优化后的催化剂在0.1 m KOH电解液中,对于HER和OER分别需要相对较低的过电位114和243 mV来提供10 mA cm的电流密度。当用作全水解的双功能催化剂时,所得催化剂显示出1.57 V的低电池电压以实现10 mA cm的电流密度,并且具有令人印象深刻的稳定性,即使在27小时后也没有明显衰减。这项工作通过同时考虑电子结构的调制、与碳基底的杂化以及通过简便合成策略进行纳米结构化,成功地展示了优化镍基双功能电催化剂的电催化性能,为设计用于大规模水电解的各种稳健的过渡金属基电催化剂提供了一条新途径。