He Wenjing, Cao Jianliang, Zhou Xinliang, Zhang Ning, Qi Yuzhu, Li Jin, Wu Naiteng, Liu Xianming
School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China.
Gels. 2025 May 25;11(6):390. doi: 10.3390/gels11060390.
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal hydrogen adsorption kinetics. Herein, we present a heterointerface engineering strategy to construct CoS/FeCoS heterojunctions anchored on bamboo fiber-derived nitrogen-doped porous carbon (CoS/FeCoS/BFPC) through hydrothermal synthesis and subsequent carbonization. BFPC carbon quasi-aerogel support not only offers a high surface area and conductive pathways but also enables uniform dispersion of active sites through nitrogen doping, which simultaneously optimizes electron transfer and mass transport. Experimental results demonstrate exceptional HER performance in alkaline media, achieving a low overpotential of 86.6 mV at 10 mA cm, a Tafel slope of 68.87 mV dec, and remarkable stability over 73 h of continuous operation. This work highlights the dual advantages of heterointerface design and carbon substrate functionalization, providing a scalable template for developing noble metal-free electrocatalysts for energy conversion technologies.
氢能作为化石燃料的可持续替代品,需要开发用于析氢反应(HER)的具有成本效益且高效的电催化剂。虽然过渡金属硫化物已展现出潜力,但其实际应用受到活性位点不足、导电性差以及氢吸附动力学不理想的阻碍。在此,我们提出一种异质界面工程策略,通过水热合成及后续碳化,构建锚定在竹纤维衍生的氮掺杂多孔碳(CoS/FeCoS/BFPC)上的CoS/FeCoS异质结。BFPC碳准气凝胶载体不仅提供高表面积和导电通路,还通过氮掺杂实现活性位点的均匀分散,这同时优化了电子转移和质量传输。实验结果表明,该材料在碱性介质中具有优异的析氢反应性能,在10 mA cm时过电位低至86.6 mV,塔菲尔斜率为68.87 mV dec,并且在连续运行73小时以上具有出色的稳定性。这项工作突出了异质界面设计和碳基底功能化的双重优势,为开发用于能量转换技术的无贵金属电催化剂提供了一种可扩展的模板。