University of Lübeck, Institute of Neurobiology, Center of Brain, Behavior and Metabolism, Marie-Curie-Strasse, 23562, Luebeck, Germany.
The University of Queensland, School of Biomedical Sciences, Faculty of Medicine, St Lucia Qld, 4071, Australia.
J Mol Biol. 2020 May 29;432(12):3618-3638. doi: 10.1016/j.jmb.2019.12.037. Epub 2020 Jan 10.
The circadian clock network regulates daily rhythms in mammalian physiology and behavior to optimally adapt the organism to the 24-h day/night cycle. A central pacemaker, the hypothalamic suprachiasmatic nucleus (SCN), coordinates subordinate cellular oscillators in the brain, as well as in peripheral organs to align with each other and external time. Stability and coordination of this vast network of cellular oscillators is achieved through different levels of coupling. Although coupling at the molecular level and across the SCN is well established and believed to define its function as pacemaker structure, the notion of coupling in other tissues and across the whole system is less well understood. In this review, we describe the different levels of coupling in the mammalian circadian clock system - from molecules to the whole organism. We highlight recent advances in gaining knowledge of the complex organization and function of circadian network regulation and its significance for the generation of stable but plastic intrinsic 24-h rhythms.
生物钟网络调节哺乳动物生理和行为的日常节律,使生物体能够最佳地适应 24 小时的昼夜循环。一个中央起搏器,即下丘脑视交叉上核(SCN),协调大脑以及外周器官中的从属细胞振荡器,使其相互协调并与外部时间同步。这个庞大的细胞振荡器网络的稳定性和协调性是通过不同层次的耦合来实现的。尽管分子水平和 SCN 之间的耦合已经得到很好的证实,并被认为定义了其作为起搏器结构的功能,但在其他组织和整个系统中耦合的概念理解得还不够充分。在这篇综述中,我们描述了哺乳动物生物钟系统中不同层次的耦合 - 从分子到整个生物体。我们强调了在获得对生物钟网络调节的复杂组织和功能的认识方面的最新进展,以及它对产生稳定但具有可塑性的内在 24 小时节律的重要性。