Suppr超能文献

视交叉上核生物钟的分子遗传学操作。

Molecular-genetic Manipulation of the Suprachiasmatic Nucleus Circadian Clock.

机构信息

Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.

Division of Neurobiology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.

出版信息

J Mol Biol. 2020 May 29;432(12):3639-3660. doi: 10.1016/j.jmb.2020.01.019. Epub 2020 Jan 26.

Abstract

Circadian (approximately daily) rhythms of physiology and behaviour adapt organisms to the alternating environments of day and night. The suprachiasmatic nucleus (SCN) of the hypothalamus is the principal circadian timekeeper of mammals. The mammalian cell-autonomous circadian clock is built around a self-sustaining transcriptional-translational negative feedback loop (TTFL) in which the negative regulators Per and Cry suppress their own expression, which is driven by the positive regulators Clock and Bmal1. Importantly, such TTFL-based clocks are present in all major tissues across the organism, and the SCN is their central co-ordinator. First, we analyse SCN timekeeping at the cell-autonomous and the circuit-based levels of organisation. We consider how molecular-genetic manipulations have been used to probe cell-autonomous timing in the SCN, identifying the integral components of the clock. Second, we consider new approaches that enable real-time monitoring of the activity of these clock components and clock-driven cellular outputs. Finally, we review how intersectional genetic manipulations of the cell-autonomous clockwork can be used to determine how SCN cells interact to generate an ensemble circadian signal. Critically, it is these network-level interactions that confer on the SCN its emergent properties of robustness, light-entrained phase and precision- properties that are essential for its role as the central co-ordinator. Remaining gaps in knowledge include an understanding of how the TTFL proteins behave individually and in complexes: whether particular SCN neuronal populations act as pacemakers, and if so, by which signalling mechanisms, and finally the nature of the recently discovered role of astrocytes within the SCN network.

摘要

昼夜节律(大约每天)的生理和行为节律使生物体适应日夜交替的环境。下丘脑的视交叉上核(SCN)是哺乳动物的主要生物钟。哺乳动物细胞自主的生物钟是围绕着一个自我维持的转录-翻译负反馈环(TTFL)构建的,其中负调节因子 Per 和 Cry 抑制它们自身的表达,这是由正调节因子 Clock 和 Bmal1 驱动的。重要的是,这种基于 TTFL 的时钟存在于生物体的所有主要组织中,而 SCN 是它们的中央协调器。首先,我们分析 SCN 在细胞自主和基于电路的组织水平上的计时。我们考虑了如何使用分子遗传操作来探测 SCN 中的细胞自主计时,确定了时钟的整体组成部分。其次,我们考虑了新的方法,可以实时监测这些时钟组件的活动和时钟驱动的细胞输出。最后,我们回顾了如何对细胞自主时钟进行交叉遗传操作,以确定 SCN 细胞如何相互作用以产生整体的昼夜节律信号。关键的是,正是这些网络级别的相互作用赋予了 SCN 涌现的属性,如鲁棒性、光诱导的相位和精确性,这些属性对于其作为中央协调器的作用至关重要。知识中的剩余差距包括理解 TTFL 蛋白如何单独和在复合物中表现:是否特定的 SCN 神经元群体充当起搏器,如果是,通过哪种信号机制,以及最后是星形胶质细胞在 SCN 网络中的新发现的作用的性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验