Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA.
Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
J Bacteriol. 2020 Feb 25;202(6). doi: 10.1128/JB.00723-19.
The marine bacterium and human pathogen rapidly colonizes surfaces by using swarming motility and forming robust biofilms. Entering one of the two colonization programs, swarming motility or sessility, involves differential regulation of many genes, resulting in a dramatic shift in physiology and behavior. has evolved complex regulation to control these two processes that have opposing outcomes. One mechanism relies on the balance of the second messenger c-di-GMP, where high c-di-GMP favors biofilm formation. possesses four homologous regulators, the Scr transcription factors, that belong in a -specific family of W[F/L/M][T/S]R motif transcriptional regulators, some members of which have been demonstrated to bind c-di-GMP. In this work, we explore the role of these Scr regulators in biofilm development. We show that each protein binds c-di-GMP, that this binding requires a critical R in the binding motif, and that the biofilm-relevant activities of CpsQ, CpsS, and ScrO but not ScrP are dependent upon second messenger binding. ScrO and CpsQ are the primary drivers of biofilm formation, as biofilms are eliminated when both of these regulators are absent. ScrO is most important for capsule expression. CpsQ is most important for RTX-matrix protein expression, although it contributes to capsule expression when c-di-GMP levels are high. Both regulators contribute to O-antigen ligase expression. ScrP works oppositely in a minor role to repress the ligase gene. CpsS plays a regulatory checkpointing role by negatively modulating expression of these biofilm-pertinent genes under fluctuating c-di-GMP conditions. Our work further elucidates the multifactorial network that contributes to biofilm development in can inhabit open ocean, chitinous shells, and the human gut. Such varied habitats and the transitions between them require adaptable regulatory networks controlling energetically expensive behaviors, including swarming motility and biofilm formation, which are promoted by low and high concentrations of the signaling molecule c-di-GMP, respectively. Here, we describe four homologous c-di-GMP-binding Scr transcription factors in Members of this family of regulators are present in many vibrios, yet their numbers and the natures of their activities differ across species. Our work highlights the distinctive roles that these transcription factors play in dynamically controlling biofilm formation and architecture in and serves as a powerful example of regulatory network evolution and diversification.
海洋细菌和人类病原体 通过利用群集运动和形成坚固的生物膜迅速在表面定殖。进入两种定殖程序之一,即群集运动或定殖,涉及许多基因的差异调控,导致生理和行为的巨大转变。 已经进化出复杂的调控机制来控制这两个具有相反结果的过程。一种机制依赖于第二信使 c-di-GMP 的平衡,其中高 c-di-GMP 有利于生物膜的形成。 拥有四个同源的调节剂,Scr 转录因子,属于特定的 W[F/L/M][T/S]R 基序转录调节因子家族,其中一些成员已被证明可以结合 c-di-GMP。在这项工作中,我们探索了这些 Scr 调节剂在生物膜发育中的作用。我们表明,每种蛋白质都与 c-di-GMP 结合,这种结合需要结合基序中的关键 R,并且 CpsQ、CpsS 和 ScrO 的生物膜相关活性,但 ScrP 不依赖于第二信使结合。ScrO 和 CpsQ 是生物膜形成的主要驱动因素,因为当这两种调节剂都不存在时,生物膜就会被消除。ScrO 对荚膜表达最重要。CpsQ 对 RTX-基质蛋白表达最重要,尽管当 c-di-GMP 水平较高时,它也有助于荚膜表达。这两种调节剂都有助于 O-抗原连接酶的表达。ScrP 以次要的拮抗作用抑制连接酶基因的表达。CpsS 通过在 c-di-GMP 条件波动时负调控这些与生物膜相关基因的表达来发挥调节检查点作用。我们的工作进一步阐明了有助于 在海洋、几丁质壳和人类肠道中都能生存。如此多样化的栖息地和它们之间的转换需要适应性强的调节网络来控制能量消耗大的行为,包括群集运动和生物膜形成,这分别由信号分子 c-di-GMP 的低浓度和高浓度促进。在这里,我们描述了 中的四个同源 c-di-GMP 结合 Scr 转录因子。该调节因子家族的成员存在于许多弧菌中,但它们的数量和活性性质在不同物种中有所不同。我们的工作突出了这些转录因子在动态控制 中生物膜形成和结构中的独特作用,并为调节网络进化和多样化提供了一个有力的例证。