Suppr超能文献

利用 DNA 规定和价态控制的材料体素来有序化三维纳米材料。

Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels.

机构信息

Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.

College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.

出版信息

Nat Mater. 2020 Jul;19(7):789-796. doi: 10.1038/s41563-019-0550-x. Epub 2020 Jan 13.

Abstract

The ability to organize nanoscale objects into well-defined three-dimensional (3D) arrays can translate advances in nanoscale synthesis into targeted material fabrication. Despite successes in nanoparticle assembly, most extant methods are system specific and not fully compatible with biomolecules. Here, we report a platform for creating distinct 3D ordered arrays from different nanomaterials using DNA-prescribed and valence-controlled material voxels. These material voxels consist of 3D DNA frames that integrate nano-objects within their scaffold, thus enabling the object's valence and coordination to be determined by the frame's vertices, which can bind to each other through hybridization. Such DNA material voxels define the lattice symmetry through the spatially prescribed valence decoupling the 3D assembly process from the nature of the nanocomponents, such as their intrinsic properties and shapes. We show this by assembling metallic and semiconductor nanoparticles and also protein superlattices. We support the technological potential of such an assembly approach by fabricating light-emitting 3D arrays with diffraction-limited spectral purity and 3D enzymatic arrays with increased activity.

摘要

将纳米级物体有序地排列成具有明确定义的三维(3D)阵列的能力,可以将纳米尺度合成方面的进展转化为有针对性的材料制造。尽管在纳米粒子组装方面取得了成功,但大多数现有方法都是针对特定系统的,与生物分子不完全兼容。在这里,我们报告了一种使用 DNA 规定的和价态控制的材料体素来从不同纳米材料中创建不同的 3D 有序阵列的平台。这些材料体素由 3D DNA 框架组成,在其支架内集成纳米物体,从而使物体的价态和配位由框架的顶点决定,顶点可以通过杂交相互结合。这种 DNA 材料体素通过空间规定的价态来定义晶格对称性,从而将 3D 组装过程与纳米组件的性质(如它们的固有性质和形状)解耦。我们通过组装金属和半导体纳米粒子以及蛋白质超晶格来证明这一点。我们通过制造具有衍射极限光谱纯度的发光 3D 阵列和具有更高活性的 3D 酶阵列,来支持这种组装方法的技术潜力。

相似文献

1
Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels.
Nat Mater. 2020 Jul;19(7):789-796. doi: 10.1038/s41563-019-0550-x. Epub 2020 Jan 13.
2
Two-Stage Assembly of Nanoparticle Superlattices with Multiscale Organization.
Nano Lett. 2022 May 11;22(9):3809-3817. doi: 10.1021/acs.nanolett.2c00942. Epub 2022 Apr 25.
3
Controlling the Self-Assembly of DNA Origami Octahedra via Manipulation of Inter-Vertex Interactions.
J Am Chem Soc. 2023 Sep 13;145(36):19578-19587. doi: 10.1021/jacs.3c03181. Epub 2023 Aug 31.
4
Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA.
J Am Chem Soc. 2011 Apr 13;133(14):5252-4. doi: 10.1021/ja111542t. Epub 2011 Mar 22.
5
Complex wireframe DNA nanostructures from simple building blocks.
Nat Commun. 2019 Mar 6;10(1):1067. doi: 10.1038/s41467-019-08647-7.
6
DNA-assembled superconducting 3D nanoscale architectures.
Nat Commun. 2020 Nov 10;11(1):5697. doi: 10.1038/s41467-020-19439-9.
7
Programmable Atom Equivalents: Atomic Crystallization as a Framework for Synthesizing Nanoparticle Superlattices.
Small. 2019 Jun;15(26):e1805424. doi: 10.1002/smll.201805424. Epub 2019 Apr 10.
8
Templated assembly of DNA origami gold nanoparticle arrays on lithographically patterned surfaces.
Methods Mol Biol. 2011;749:187-97. doi: 10.1007/978-1-61779-142-0_13.
10
Engineering Organization of DNA Nano-Chambers through Dimensionally Controlled and Multi-Sequence Encoded Differentiated Bonds.
J Am Chem Soc. 2020 Oct 14;142(41):17531-17542. doi: 10.1021/jacs.0c07263. Epub 2020 Sep 21.

引用本文的文献

1
Economical and Versatile Subunit Design Principles for Self-Assembled DNA Origami Structures.
ACS Nano. 2025 Sep 2;19(34):30889-30901. doi: 10.1021/acsnano.5c06681. Epub 2025 Aug 19.
2
Volumetric Shaping of Nanoparticle-DNA Crystals by Light-Induced Milling.
Nano Lett. 2025 Aug 27;25(34):12884-12891. doi: 10.1021/acs.nanolett.5c02830. Epub 2025 Aug 12.
3
Superstructural phase transitions in polymer-grafted nanooctahedra.
Sci Adv. 2025 Jul 18;11(29):eadw2740. doi: 10.1126/sciadv.adw2740.
4
Programming precise nanoparticle patterns.
Nat Mater. 2025 Jul 9. doi: 10.1038/s41563-025-02262-2.
5
Encoding hierarchical 3D architecture through inverse design of programmable bonds.
Nat Mater. 2025 Aug;24(8):1273-1282. doi: 10.1038/s41563-025-02263-1. Epub 2025 Jul 9.
6
DNA-programmed responsive microorganism assembly with controlled patterns and behaviors.
Sci Adv. 2025 Jun 13;11(24):eads8651. doi: 10.1126/sciadv.ads8651.
7
Nanomaterials for Combating Cancer while Safeguarding Organs: Safe and Effective Integrative Tumor Therapy.
Biomater Res. 2025 Jun 12;29:0165. doi: 10.34133/bmr.0165. eCollection 2025.
8
Designing the Self-Assembly of Disordered Materials Via Color Frustration.
Adv Mater. 2025 Aug;37(34):e2502136. doi: 10.1002/adma.202502136. Epub 2025 Jun 10.
9
Engineering Liquid Hierarchical Materials with DNA-Programmed Spherical Nucleic Acids.
Adv Sci (Weinh). 2025 Aug;12(31):e04471. doi: 10.1002/advs.202504471. Epub 2025 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验