Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA.
College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
Nat Mater. 2020 Jul;19(7):789-796. doi: 10.1038/s41563-019-0550-x. Epub 2020 Jan 13.
The ability to organize nanoscale objects into well-defined three-dimensional (3D) arrays can translate advances in nanoscale synthesis into targeted material fabrication. Despite successes in nanoparticle assembly, most extant methods are system specific and not fully compatible with biomolecules. Here, we report a platform for creating distinct 3D ordered arrays from different nanomaterials using DNA-prescribed and valence-controlled material voxels. These material voxels consist of 3D DNA frames that integrate nano-objects within their scaffold, thus enabling the object's valence and coordination to be determined by the frame's vertices, which can bind to each other through hybridization. Such DNA material voxels define the lattice symmetry through the spatially prescribed valence decoupling the 3D assembly process from the nature of the nanocomponents, such as their intrinsic properties and shapes. We show this by assembling metallic and semiconductor nanoparticles and also protein superlattices. We support the technological potential of such an assembly approach by fabricating light-emitting 3D arrays with diffraction-limited spectral purity and 3D enzymatic arrays with increased activity.
将纳米级物体有序地排列成具有明确定义的三维(3D)阵列的能力,可以将纳米尺度合成方面的进展转化为有针对性的材料制造。尽管在纳米粒子组装方面取得了成功,但大多数现有方法都是针对特定系统的,与生物分子不完全兼容。在这里,我们报告了一种使用 DNA 规定的和价态控制的材料体素来从不同纳米材料中创建不同的 3D 有序阵列的平台。这些材料体素由 3D DNA 框架组成,在其支架内集成纳米物体,从而使物体的价态和配位由框架的顶点决定,顶点可以通过杂交相互结合。这种 DNA 材料体素通过空间规定的价态来定义晶格对称性,从而将 3D 组装过程与纳米组件的性质(如它们的固有性质和形状)解耦。我们通过组装金属和半导体纳米粒子以及蛋白质超晶格来证明这一点。我们通过制造具有衍射极限光谱纯度的发光 3D 阵列和具有更高活性的 3D 酶阵列,来支持这种组装方法的技术潜力。