Gabrys Paul A, Zornberg Leonardo Z, Macfarlane Robert J
Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
Small. 2019 Jun;15(26):e1805424. doi: 10.1002/smll.201805424. Epub 2019 Apr 10.
Decades of research efforts into atomic crystallization phenomenon have led to a comprehensive understanding of the pathways through which atoms form different crystal structures. With the onset of nanotechnology, methods that use colloidal nanoparticles (NPs) as nanoscale "artificial atoms" to generate hierarchically ordered materials are being developed as an alternative strategy for materials synthesis. However, the assembly mechanisms of NP-based crystals are not always as well-understood as their atomic counterparts. The creation of a tunable nanoscale synthon whose assembly can be explained using the context of extensively examined atomic crystallization will therefore provide significant advancement in nanomaterials synthesis. DNA-grafted NPs have emerged as a strong candidate for such a "programmable atom equivalent" (PAE), because the predictable nature of DNA base-pairing allows for complex yet easily controlled assembly. This Review highlights the characteristics of these PAEs that enable controlled assembly behaviors analogous to atomic phenomena, which allows for rational material design well beyond what can be achieved with other crystallization techniques.
数十年来对原子结晶现象的研究努力,已使人们全面了解了原子形成不同晶体结构的途径。随着纳米技术的出现,将胶体纳米粒子(NPs)用作纳米级“人工原子”以生成层次有序材料的方法正在被开发出来,作为材料合成的一种替代策略。然而,基于NP的晶体的组装机制并不总是像其原子对应物那样被人们所熟知。因此,创建一种可调谐的纳米级合成子,其组装可以在广泛研究的原子结晶背景下得到解释,这将在纳米材料合成方面取得重大进展。DNA接枝的纳米粒子已成为这种“可编程原子等效物”(PAE)的有力候选者,因为DNA碱基配对的可预测性质允许进行复杂但易于控制的组装。本综述强调了这些PAE的特性,这些特性能够实现类似于原子现象的可控组装行为,这使得合理的材料设计远远超出了其他结晶技术所能达到的水平。