Chmielewska Julia M, Redeker Daniel C, Szustakiewicz Piotr, Arnon Zohar, Powala Filip, Paterczyk Bohdan, Michelson Aaron, Gang Oleg, Majewski Pawel W
Faculty of Chemistry, University of Warsaw, Warsaw 02-089, Poland.
Department of Chemical Engineering, Columbia University, New York, New York 10027, United States.
Nano Lett. 2025 Aug 27;25(34):12884-12891. doi: 10.1021/acs.nanolett.5c02830. Epub 2025 Aug 12.
DNA-programmable self-assembly enables the formation of nanoparticle crystals with controlled lattice symmetry. While this approach offers the formation of complexly ordered nanostructures for optical, mechanical, and biological applications, a mesoscale control over such nanomaterials is limited. Directing the material formation process through the assembly pathway or external fields allows for modulating crystal morphology, but achieving arbitrary morphology remains challenging. Here, we present a photothermal method for shaping 3D DNA-programmable crystals of gold nanoparticles. Through local heating of nanoparticles due to plasmonic light absorption, we induce targeted volumetric dissolution of specifically defined crystal areas with micron-scale accuracy. This technique effectively prescribes crystal shaping and creates arbitrarily shaped voids within crystals. We further investigate both computationally and experimentally the key factors governing volumetric material subtraction. The developed automated light-milling platform enables the fabrication of nanomaterials exhibiting both DNA-programmable nanoscale order and custom-designed mesoscale architecture.
DNA可编程自组装能够形成具有可控晶格对称性的纳米颗粒晶体。虽然这种方法为光学、机械和生物应用提供了复杂有序纳米结构的形成,但对这类纳米材料的中尺度控制是有限的。通过组装途径或外部场引导材料形成过程可以调节晶体形态,但实现任意形态仍然具有挑战性。在这里,我们提出了一种用于塑造金纳米颗粒的3D DNA可编程晶体的光热方法。通过由于等离子体光吸收导致的纳米颗粒局部加热,我们以微米级精度诱导特定定义的晶体区域进行有针对性的体积溶解。该技术有效地规定了晶体成型,并在晶体内创建了任意形状的空隙。我们进一步通过计算和实验研究了控制体积材料去除的关键因素。所开发的自动光铣平台能够制造出既具有DNA可编程纳米级有序性又具有定制设计中尺度结构的纳米材料。