Wang Huixiang, Biswas Subir Kumar, Zhu Sailing, Lu Ya, Yue Yiying, Han Jingquan, Xu Xinwu, Wu Qinglin, Xiao Huining
College of Materials Science and Engineering, Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
Laboratory of Active Bio-based Materials, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan.
Nanomaterials (Basel). 2020 Jan 6;10(1):112. doi: 10.3390/nano10010112.
Recently, with the development of personal wearable electronic devices, the demand for portable power is miniaturization and flexibility. Electro-conductive hydrogels (ECHs) are considered to have great application prospects in portable energy-storage devices. However, the synergistic properties of self-healability, viscoelasticity, and ideal electrochemistry are key problems. Herein, a novel ECH was synthesized by combining polyvinyl alcohol-borax (PVA) hydrogel matrix and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-cellulose nanofibers (TOCNFs), carbon nanotubes (CNTs), and polyaniline (PANI). Among them, CNTs provided excellent electrical conductivity; TOCNFs acted as a dispersant to help CNTs form a stable suspension; PANI enhanced electrochemical performance by forming a "core-shell" structural composite. The freeze-standing composite hydrogel with a hierarchical 3D-network structure possessed the compression stress (152 kPa) and storage modulus (18.2 kPa). The composite hydrogel also possessed low density (1.2 g cm), high water-content (95%), excellent flexibility, self-healing capability, electrical conductivity (15.3 S m), and specific capacitance of 226.8 F g at 0.4 A g. The fabricated solid-state all-in-one supercapacitor device remained capacitance retention (90%) after 10 cutting/healing cycles and capacitance retention (85%) after 1000 bending cycles. The novel ECH had potential applications in advanced personalized wearable electronic devices.
近年来,随着个人可穿戴电子设备的发展,对便携式电源的需求呈现出小型化和灵活性的特点。导电水凝胶(ECHs)被认为在便携式储能设备中具有巨大的应用前景。然而,自愈合性、粘弹性和理想的电化学性能的协同特性是关键问题。在此,通过将聚乙烯醇-硼砂(PVA)水凝胶基质与2,2,6,6-四甲基哌啶-1-氧基(TEMPO)-纤维素纳米纤维(TOCNFs)、碳纳米管(CNTs)和聚苯胺(PANI)相结合,合成了一种新型ECH。其中,CNTs提供了优异的导电性;TOCNFs作为分散剂,帮助CNTs形成稳定的悬浮液;PANI通过形成“核壳”结构复合材料增强了电化学性能。具有分级三维网络结构的冷冻静置复合水凝胶具有压缩应力(约152 kPa)和储能模量(约18.2 kPa)。该复合水凝胶还具有低密度(约1.2 g/cm³)、高含水量(约95%)、优异的柔韧性、自愈合能力、电导率(15.3 S/m)以及在0.4 A/g时226.8 F/g的比电容。所制备的固态一体化超级电容器装置在10次切割/愈合循环后电容保持率约为90%,在1000次弯曲循环后电容保持率约为85%。这种新型ECH在先进的个性化可穿戴电子设备中具有潜在应用。