Cheng Xiaoyu, Wang Huixiang, Wang Shaowei, Jiao Yue, Sang Chenyu, Jiang Shaohua, He Shuijian, Mei Changtong, Xu Xinwu, Xiao Huining, Han Jingquan
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
Department of Biological Sciences, Xinzhou Normal University, Xinzhou, Shanxi 034000, China.
J Colloid Interface Sci. 2024 Apr 15;660:923-933. doi: 10.1016/j.jcis.2024.01.160. Epub 2024 Jan 24.
The flexible and self-healing supercapacitors (SCs) are considered to be promising smart energy storage devices. Nevertheless, the SCs integrated with flexibility, lightweight, pattern editability, self-healing capabilities and desirable electrochemical properties remain a challenge. Herein, an all-in-one self-healing SC fabricated with the free-standing hybrid film (TCMP) composed of the 2,2,6,6-tetramethylpiperidin-1-yloxy-oxidized cellulose nanofibers (TOCNs) carried carbon nanotubes (CNTs), manganese dioxide (MnO) and polyaniline (PANI) as the electrode, polyvinyl alcohol/sulfuric acid (PVA/HSO) gel as the electrolyte and dynamically cross-linked cellulose nanofibers/PVA/sodium tetraborate decahydrate (CNF/PB) hydrogel as the self-healing electrode matrix is developed. The TCMP film electrodes are fabricated through a facile in-situ polymerization of MnO and PANI in TOCNs-dispersed CNTs composite networks, exhibiting lightweight, high electrical conductivity, flexibility, pattern editability and excellent electrochemical properties. Benefited from the hierarchically porous structure and high mechanical properties of TOCNs, excellent electrical conductivity of CNTs and the desirable synergistic effect of pseudocapacitance induced by MnO and PANI, the assembled SC with an interdigital structure demonstrated a high areal capacitance of 1108 mF cm at 2 mA cm, large areal energy density of 153.7 μWh cm at 1101.7 μW cm. A satisfactory bending cycle performance (capacitance retention up to 95 % after 200 bending deformations) and self-healing characteristics (∼90 % capacitance retention after 10 cut/repair cycles) are demonstrated for the TCMP-based symmetric SC, delivering a feasible strategy for electrochemical energy storage devices with excellent performance, designable patterns and desirable safe lifespan.
柔性且可自愈的超级电容器(SCs)被认为是很有前景的智能储能设备。然而,集成了柔韧性、轻质、图案可编辑性、自愈能力和理想电化学性能的超级电容器仍然是一个挑战。在此,开发了一种一体化的自愈超级电容器,其采用由负载碳纳米管(CNTs)、二氧化锰(MnO)和聚苯胺(PANI)的2,2,6,6 - 四甲基哌啶 - 1 - 氧基氧化纤维素纳米纤维(TOCNs)组成的独立混合膜(TCMP)作为电极,聚乙烯醇/硫酸(PVA/HSO)凝胶作为电解质,以及动态交联的纤维素纳米纤维/聚乙烯醇/十水硼酸钠(CNF/PB)水凝胶作为自愈电极基质。TCMP膜电极通过在TOCNs分散的CNTs复合网络中原位聚合MnO和PANI制备而成,具有轻质、高电导率、柔韧性、图案可编辑性和优异的电化学性能。受益于TOCNs的分级多孔结构和高机械性能、CNTs的优异电导率以及MnO和PANI诱导的赝电容的理想协同效应,所组装的具有叉指结构的超级电容器在2 mA cm时表现出1108 mF cm的高面积电容,在1101.7 μW cm时具有153.7 μWh cm的大面能量密度。基于TCMP的对称超级电容器展示了令人满意的弯曲循环性能(200次弯曲变形后电容保持率高达95%)和自愈特性(10次切割/修复循环后电容保持率约为90%),为具有优异性能、可设计图案和理想安全寿命的电化学储能设备提供了一种可行策略。