Suppr超能文献

早期偏离正常结构连通性:轻度创伤性脑损伤的新型固有严重程度评分。

Early deviation from normal structural connectivity: A novel intrinsic severity score for mild TBI.

机构信息

From the Interdisciplinary Complex Systems Group, School of Computing (P.N.T., N.M.d.S., Y.W.), Institute of Neuroscience, Faculty of Medical Sciences (P.N.T., Y.W., R.F.), and Institute of Cellular Medicine & Newcastle MR Centre (A.B.), Newcastle University, Newcastle Upon Tyne; and Institute of Neurology (P.N.T., Y.W.), University College London, UK.

出版信息

Neurology. 2020 Mar 10;94(10):e1021-e1026. doi: 10.1212/WNL.0000000000008902. Epub 2020 Jan 14.

Abstract

OBJECTIVE

Studies of outcome after traumatic brain injury (TBI) are hampered by the lack of robust injury severity measures that can accommodate spatial-anatomical and mechanistic heterogeneity. In this study we introduce a Mahalanobis distance measure () as an intrinsic injury severity measure that combines in a single score the many ways a given injured brain's connectivity can vary from that of healthy controls. Our objective is to test the hypotheses that is superior to univariate measures in (1) discriminating patients and controls and (2) correlating with cognitive assessment.

METHODS

Sixty-five participants (34 with mild TBI, 31 controls) underwent diffusion tensor MRI and extensive neuropsychological testing. Structural connectivity was inferred for all participants for 22 major white matter connections. Twenty-two univariate measures (1 per connection) and 1 multivariate measure (), capturing and summarizing all connectivity change in a single score, were computed.

RESULTS

Our multivariate measure () was able to better discriminate between patients and controls (area under the curve 0.81) than any individual univariate measure. significantly correlated with cognitive outcome (Spearman ρ = 0.31; < 0.05). No univariate measure showed significant correlation after correction for multiple comparisons.

CONCLUSIONS

Heterogeneity in the severity and distribution of injuries after TBI has traditionally complicated the understanding of outcomes after TBI. Our approach provides a single, continuous variable that can fully capture individual heterogeneity. 's ability to distinguish even mildly injured patients from controls and its correlation with cognitive assessment suggest utility as an imaging-based marker of intrinsic injury severity.

摘要

目的

创伤性脑损伤(TBI)的预后研究受到缺乏能够适应空间解剖和机制异质性的强大损伤严重程度测量的阻碍。在这项研究中,我们引入了马氏距离()作为一种内在损伤严重程度的度量,它将给定受伤大脑的连通性与健康对照的许多变化方式结合在一个单一的分数中。我们的目的是检验以下两个假设:(1)与单变量测量相比,在区分患者和对照组方面具有优越性;(2)与认知评估相关。

方法

65 名参与者(34 名轻度 TBI,31 名对照组)接受了弥散张量 MRI 和广泛的神经心理学测试。为所有参与者推断了 22 个主要白质连接的结构连通性。计算了 22 个单变量测量值(每个连接 1 个)和 1 个多变量测量值(),它捕获并总结了一个单一分数中的所有连通性变化。

结果

我们的多变量测量值()能够更好地区分患者和对照组(曲线下面积 0.81),而任何单个单变量测量值都无法做到这一点。与认知结果显著相关(Spearman ρ = 0.31;< 0.05)。在进行多次比较校正后,没有单变量测量值显示出显著相关性。

结论

TBI 后损伤的严重程度和分布的异质性一直以来都使人们难以理解 TBI 后的预后。我们的方法提供了一个单一的、连续的变量,可以充分捕捉个体的异质性。即使是轻度受伤的患者与对照组的区分,以及与认知评估的相关性,都表明它作为一种基于成像的内在损伤严重程度标志物具有一定的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b67/7238920/2b8c53dc9214/NEUROLOGY2019985200FF1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验