Suppr超能文献

MVComp工具包:脑MRI特征的多变量比较,考虑了不同指标间的共同信息。

MVComp toolbox: MultiVariate Comparisons of brain MRI features accounting for common information across metrics.

作者信息

Tremblay Stefanie A, Alasmar Zaki, Pirhadi Amir, Carbonell Felix, Iturria-Medina Yasser, Gauthier Claudine J, Steele Christopher J

机构信息

Department of Physics, Concordia University, Montreal, Canada.

School of Health, Concordia University, Montreal, Canada.

出版信息

bioRxiv. 2024 Feb 28:2024.02.27.582381. doi: 10.1101/2024.02.27.582381.

Abstract

Multivariate approaches have recently gained in popularity to address the physiological unspecificity of neuroimaging metrics and to better characterize the complexity of biological processes underlying behavior. However, commonly used approaches are biased by the intrinsic associations between variables, or they are computationally expensive and may be more complicated to implement than standard univariate approaches. Here, we propose using the Mahalanobis distance (D2), an individual-level measure of deviation relative to a reference distribution that accounts for covariance between metrics. To facilitate its use, we introduce an open-source python-based tool for computing D2 relative to a reference group or within a single individual: the MultiVariate Comparison (MVComp) toolbox. The toolbox allows different levels of analysis (i.e., group- or subject-level), resolutions (e.g., voxel-wise, ROI-wise) and dimensions considered (e.g., combining MRI metrics or WM tracts). Several example cases are presented to showcase the wide range of possible applications of MVComp and to demonstrate the functionality of the toolbox. The D2 framework was applied to the assessment of white matter (WM) microstructure at 1) the group-level, where D2 can be computed between a subject and a reference group to yield an individualized measure of deviation. We observed that clustering applied to D2 in the corpus callosum yields parcellations that highly resemble known topography based on neuroanatomy, suggesting that D2 provides an integrative index that meaningfully reflects the underlying microstructure. 2) At the subject level, D2 was computed between voxels to obtain a measure of (dis)similarity. The loadings of each MRI metric (i.e., its relative contribution to D2) were then extracted in voxels of interest to showcase a useful option of the MVComp toolbox. These relative contributions can provide important insights into the physiological underpinnings of differences observed. Integrative multivariate models are crucial to expand our understanding of the complex brain-behavior relationships and the multiple factors underlying disease development and progression. Our toolbox facilitates the implementation of a useful multivariate method, making it more widely accessible.

摘要

多元方法近来越来越受欢迎,用于解决神经成像指标的生理非特异性问题,并更好地刻画行为背后生物过程的复杂性。然而,常用方法受到变量之间内在关联的影响而存在偏差,或者计算成本高昂,且可能比标准单变量方法更难实施。在此,我们提议使用马氏距离(D2),这是一种相对于参考分布的个体水平偏差度量,它考虑了指标之间的协方差。为便于使用,我们引入了一个基于Python的开源工具,用于计算相对于参考组或单个个体的D2:多变量比较(MVComp)工具箱。该工具箱允许进行不同层次的分析(即组水平或个体水平)、分辨率(例如体素水平、感兴趣区域水平)以及考虑不同维度(例如结合MRI指标或白质束)。本文展示了几个示例案例,以说明MVComp可能的广泛应用范围,并展示该工具箱的功能。D2框架被应用于白质(WM)微观结构的评估:1)在组水平,可在个体与参考组之间计算D2,以得出个体偏差度量。我们观察到,应用于胼胝体D2的聚类产生的分区与基于神经解剖学的已知拓扑结构高度相似,这表明D2提供了一个有意义地反映潜在微观结构的综合指标。2)在个体水平,计算体素之间的D2以获得(不)相似性度量。然后在感兴趣的体素中提取每个MRI指标的负荷(即其对D2的相对贡献),以展示MVComp工具箱的一个有用选项。这些相对贡献可为观察到的差异的生理基础提供重要见解。综合多元模型对于扩展我们对复杂脑-行为关系以及疾病发展和进展背后多种因素的理解至关重要。我们的工具箱促进了一种有用的多元方法的实施,使其更易于广泛使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc3f/10925263/95078cdd2b54/nihpp-2024.02.27.582381v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验