Suppr超能文献

利用规范模型提高精神分裂症扩散 MRI 的预测能力——迈向个体水平分类。

Improving the predictive potential of diffusion MRI in schizophrenia using normative models-Towards subject-level classification.

机构信息

Department of Mathematics, Tel-Aviv University, Tel-Aviv, Israel.

Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Hum Brain Mapp. 2021 Oct 1;42(14):4658-4670. doi: 10.1002/hbm.25574. Epub 2021 Jul 29.

Abstract

Diffusion MRI studies consistently report group differences in white matter between individuals diagnosed with schizophrenia and healthy controls. Nevertheless, the abnormalities found at the group-level are often not observed at the individual level. Among the different approaches aiming to study white matter abnormalities at the subject level, normative modeling analysis takes a step towards subject-level predictions by identifying affected brain locations in individual subjects based on extreme deviations from a normative range. Here, we leveraged a large harmonized diffusion MRI dataset from 512 healthy controls and 601 individuals diagnosed with schizophrenia, to study whether normative modeling can improve subject-level predictions from a binary classifier. To this aim, individual deviations from a normative model of standard (fractional anisotropy) and advanced (free-water) dMRI measures, were calculated by means of age and sex-adjusted z-scores relative to control data, in 18 white matter regions. Even though larger effect sizes are found when testing for group differences in z-scores than are found with raw values (p < .001), predictions based on summary z-score measures achieved low predictive power (AUC < 0.63). Instead, we find that combining information from the different white matter tracts, while using multiple imaging measures simultaneously, improves prediction performance (the best predictor achieved AUC = 0.726). Our findings suggest that extreme deviations from a normative model are not optimal features for prediction. However, including the complete distribution of deviations across multiple imaging measures improves prediction, and could aid in subject-level classification.

摘要

弥散磁共振成像研究一致报告了精神分裂症患者和健康对照组之间的白质群体差异。然而,在群体水平上发现的异常情况在个体水平上往往观察不到。在旨在研究个体水平白质异常的不同方法中,规范建模分析通过根据与规范范围的极端偏差,在个体受试者中识别受影响的大脑位置,朝着个体水平的预测迈出了一步。在这里,我们利用来自 512 名健康对照者和 601 名精神分裂症患者的大型协调弥散磁共振成像数据集,研究规范建模是否可以提高基于二元分类器的个体水平预测。为此,通过相对于对照数据的年龄和性别调整 z 分数,计算了 18 个白质区域中标准(各向异性分数)和先进(游离水)dMRI 测量的个体与规范模型的偏差。尽管在测试 z 分数的组间差异时发现的效应量比原始值大(p<0.001),但基于汇总 z 分数的预测仅获得了低预测能力(AUC<0.63)。相反,我们发现结合不同白质束的信息,同时同时使用多种成像测量,可提高预测性能(最佳预测器的 AUC 为 0.726)。我们的研究结果表明,偏离规范模型的极端偏差不是最佳的预测特征。但是,包括多个成像测量的偏差的完整分布可以提高预测能力,并有助于个体水平的分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7974/8410550/72a1acc4d48e/HBM-42-4658-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验