Suppr超能文献

动态移位探测器:一种用于识别控制种群的参数值变化的算法。

The Dynamic Shift Detector: An algorithm to identify changes in parameter values governing populations.

机构信息

Department of Biological Sciences and Environmental Science and Design Research Initiative, Kent State University, Kent, Ohio, United States of America.

Department of Integrative Biology; Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, United States of America.

出版信息

PLoS Comput Biol. 2020 Jan 15;16(1):e1007542. doi: 10.1371/journal.pcbi.1007542. eCollection 2020 Jan.

Abstract

Environmental factors interact with internal rules of population regulation, sometimes perturbing systems to alternate dynamics though changes in parameter values. Yet, pinpointing when such changes occur in naturally fluctuating populations is difficult. An algorithmic approach that can identify the timing and magnitude of parameter shifts would facilitate understanding of abrupt ecological transitions with potential to inform conservation and management of species. The "Dynamic Shift Detector" is an algorithm to identify changes in parameter values governing temporal fluctuations in populations with nonlinear dynamics. The algorithm examines population time series data for the presence, location, and magnitude of parameter shifts. It uses an iterative approach to fitting subsets of time series data, then ranks the fit of break point combinations using model selection, assigning a relative weight to each break. We examined the performance of the Dynamic Shift Detector with simulations and two case studies. Under low environmental/sampling noise, the break point sets selected by the Dynamic Shift Detector contained the true simulated breaks with 70-100% accuracy. The weighting tool generally assigned breaks intentionally placed in simulated data (i.e., true breaks) with weights averaging >0.8 and those due to sampling error (i.e., erroneous breaks) with weights averaging <0.2. In our case study examining an invasion process, the algorithm identified shifts in population cycling associated with variations in resource availability. The shifts identified for the conservation case study highlight a decline process that generally coincided with changing management practices affecting the availability of hostplant resources. When interpreted in the context of species biology, the Dynamic Shift Detector algorithm can aid management decisions and identify critical time periods related to species' dynamics. In an era of rapid global change, such tools can provide key insights into the conditions under which population parameters, and their corresponding dynamics, can shift.

摘要

环境因素与种群调节的内部规则相互作用,有时会通过参数值的变化扰乱系统的动态平衡。然而,确定这些变化何时发生在自然波动的种群中是很困难的。一种能够确定参数变化时间和幅度的算法方法将有助于理解具有潜在保护和管理物种意义的突发生态转变。“动态转变检测器”是一种用于识别具有非线性动态的种群时间变化中参数值变化的算法。该算法检查种群时间序列数据中参数变化的存在、位置和幅度。它使用迭代方法拟合时间序列数据的子集,然后使用模型选择对断点组合的拟合进行排名,为每个断点分配一个相对权重。我们使用模拟和两个案例研究来检验动态转变检测器的性能。在低环境/采样噪声下,动态转变检测器选择的断点集包含了模拟断点的真实值,准确率为 70-100%。加权工具通常会将故意放置在模拟数据中的断点(即真实断点)赋予平均权重>0.8,而将由于采样误差导致的断点(即错误断点)赋予平均权重<0.2。在我们研究入侵过程的案例研究中,该算法确定了与资源可用性变化相关的种群循环转变。在保护案例研究中确定的转变突出了一个下降过程,该过程通常与影响寄主植物资源可用性的管理实践变化相一致。当从物种生物学的角度进行解释时,动态转变检测器算法可以帮助管理决策,并确定与物种动态相关的关键时期。在快速全球变化的时代,这种工具可以为种群参数及其相应动态可能发生变化的条件提供关键见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验