Suppr超能文献

用于从血压波形估计代偿储备的一维卷积神经网络

1D Convolutional Neural Networks for Estimation of Compensatory Reserve from Blood Pressure Waveforms.

作者信息

Techentin Robert W, Felton Christopher L, Schlotman Taylor E, Gilbert Barry K, Joyner Michael J, Curry Timothy B, Convertino Victor A, Holmes David R, Haider Clifton R

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2169-2173. doi: 10.1109/EMBC.2019.8857116.

Abstract

We propose a Deep Convolutional Neural Network (CNN) architecture for computing a Compensatory Reserve Metric (CRM) for trauma victims suffering from hypovolemia (decreased circulating blood volume). The CRM is a single health indicator value that ranges from 100% for healthy individuals, down to 0% at hemodynamic decompensation - when the body can no longer compensate for blood loss. The CNN is trained on 20 second blood pressure waveform segments obtained from a finger-cuff monitor of 194 subjects. The model accurately predicts CRM when tested on data from 22 additional human subjects obtained from Lower Body Negative Pressure (LBNP) emulation of hemorrhage, attaining a mean squared error (MSE) of 0.0238 over the full range of values, including those from subjects with both low and high tolerance to central hypovolemia.

摘要

我们提出了一种深度卷积神经网络(CNN)架构,用于为患有低血容量(循环血量减少)的创伤患者计算代偿储备指标(CRM)。CRM是一个单一的健康指标值,健康个体为100%,在血流动力学失代偿时降至0%,即身体无法再代偿失血时。该CNN在从194名受试者的指套式监测器获取的20秒血压波形片段上进行训练。当在另外22名通过下体负压(LBNP)模拟出血获得的人类受试者的数据上进行测试时,该模型能够准确预测CRM,在包括对中心性低血容量耐受性低和高的受试者的整个值范围内,均方误差(MSE)达到0.0238。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验