Techentin Robert W, Felton Christopher L, Schlotman Taylor E, Gilbert Barry K, Joyner Michael J, Curry Timothy B, Convertino Victor A, Holmes David R, Haider Clifton R
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2169-2173. doi: 10.1109/EMBC.2019.8857116.
We propose a Deep Convolutional Neural Network (CNN) architecture for computing a Compensatory Reserve Metric (CRM) for trauma victims suffering from hypovolemia (decreased circulating blood volume). The CRM is a single health indicator value that ranges from 100% for healthy individuals, down to 0% at hemodynamic decompensation - when the body can no longer compensate for blood loss. The CNN is trained on 20 second blood pressure waveform segments obtained from a finger-cuff monitor of 194 subjects. The model accurately predicts CRM when tested on data from 22 additional human subjects obtained from Lower Body Negative Pressure (LBNP) emulation of hemorrhage, attaining a mean squared error (MSE) of 0.0238 over the full range of values, including those from subjects with both low and high tolerance to central hypovolemia.
我们提出了一种深度卷积神经网络(CNN)架构,用于为患有低血容量(循环血量减少)的创伤患者计算代偿储备指标(CRM)。CRM是一个单一的健康指标值,健康个体为100%,在血流动力学失代偿时降至0%,即身体无法再代偿失血时。该CNN在从194名受试者的指套式监测器获取的20秒血压波形片段上进行训练。当在另外22名通过下体负压(LBNP)模拟出血获得的人类受试者的数据上进行测试时,该模型能够准确预测CRM,在包括对中心性低血容量耐受性低和高的受试者的整个值范围内,均方误差(MSE)达到0.0238。