Suppr超能文献

一种新型的基于脑电图的四类语言脑机接口。

A Novel EEG-Based Four-Class Linguistic BCI.

作者信息

Jahangiri Amir, Achanccaray David, Sepulveda Francisco

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3050-3053. doi: 10.1109/EMBC.2019.8856644.

Abstract

In this work, we present a novel EEG-based Linguistic BCI, which uses the four phonemic structures "BA", "FO", "LE", and "RY" as covert speech task classes. Six neurologically healthy volunteers with the age range of 19-37 participated in this experiment. Participants were asked to covertly speak a phonemic structure when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. The duration of each trial is 312ms starting with the cue. The BCI was trained using a mixed randomized recording run containing 15 trials per class. The BCI is tested by playing a simple game of "Wack a mole" containing 5 trials per class presented in random order. The average classification accuracy for the 6 users is 82.5%. The most valuable features emerge after Auditory cue recognition (~100ms post onset), and within the 70-128 Hz frequency range. The most significant identified brain regions were the Prefrontal Cortex (linked to stimulus driven executive control), Wernicke's area (linked to Phonological code retrieval), the right IFG, and Broca's area (linked to syllabification). In this work, we have only scratched the surface of using Linguistic tasks for BCIs and the potential for creating much more capable systems in the future using this approach exists.

摘要

在这项工作中,我们展示了一种基于脑电图的新型语言脑机接口,它使用“BA”“FO”“LE”和“RY”这四种音素结构作为隐蔽语音任务类别。六名年龄在19至37岁之间的神经健康志愿者参与了该实验。参与者在听到听觉提示时被要求隐蔽地说出一种音素结构。脑电图通过64个电极以2048样本/秒的速度进行记录。每个试验的持续时间为312毫秒,从提示开始。脑机接口使用包含每个类别15次试验的混合随机记录运行进行训练。通过玩一个简单的“打地鼠”游戏来测试脑机接口,该游戏包含每个类别5次试验,以随机顺序呈现。6名用户的平均分类准确率为82.5%。最有价值的特征出现在听觉提示识别之后(起始后约100毫秒),以及70至128赫兹的频率范围内。确定的最显著脑区是前额叶皮层(与刺激驱动的执行控制有关)、韦尼克区(与语音代码检索有关)、右侧额下回和布洛卡区(与音节划分有关)。在这项工作中,我们只是触及了将语言任务用于脑机接口的表面,未来使用这种方法创建更强大系统的潜力是存在的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验