1,* Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M4G1R8, Canada.
2 School of Computer Science, Engineering & Mathematics, Faculty of Science & Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia.
Int J Neural Syst. 2017 Dec;27(8):1750033. doi: 10.1142/S0129065717500332. Epub 2017 Jun 13.
Brain-computer interfaces (BCIs) for communication can be nonintuitive, often requiring the performance of hand motor imagery or some other conversation-irrelevant task. In this paper, electroencephalography (EEG) was used to develop two intuitive online BCIs based solely on covert speech. The goal of the first BCI was to differentiate between 10[Formula: see text]s of mental repetitions of the word "no" and an equivalent duration of unconstrained rest. The second BCI was designed to discern between 10[Formula: see text]s each of covert repetition of the words "yes" and "no". Twelve participants used these two BCIs to answer yes or no questions. Each participant completed four sessions, comprising two offline training sessions and two online sessions, one for testing each of the BCIs. With a support vector machine and a combination of spectral and time-frequency features, an average accuracy of [Formula: see text] was reached across participants in the online classification of no versus rest, with 10 out of 12 participants surpassing the chance level (60.0% for [Formula: see text]). The online classification of yes versus no yielded an average accuracy of [Formula: see text], with eight participants exceeding the chance level. Task-specific changes in EEG beta and gamma power in language-related brain areas tended to provide discriminatory information. To our knowledge, this is the first report of online EEG classification of covert speech. Our findings support further study of covert speech as a BCI activation task, potentially leading to the development of more intuitive BCIs for communication.
脑机接口(BCIs)用于交流可能并不直观,通常需要执行手部运动想象或其他与对话无关的任务。在本文中,我们使用脑电图(EEG)开发了两种仅基于内隐言语的直观在线 BCI。第一个 BCI 的目标是区分 10 秒的“不”字心理重复和相当时长的无约束休息。第二个 BCI 旨在区分 10 秒的“是”和“不”的内隐重复。12 名参与者使用这两个 BCI 来回答是或否的问题。每位参与者完成四个会话,包括两个离线训练会话和两个在线会话,每个会话测试一个 BCI。使用支持向量机和频谱和时频特征的组合,参与者在在线分类中达到了[Formula: see text]的平均准确率,其中 10 名参与者超过了机会水平([Formula: see text])。在线分类“是”与“否”的平均准确率为[Formula: see text],其中 8 名参与者超过了机会水平。语言相关脑区的 EEG β和γ功率的特定任务变化往往提供了有区别的信息。据我们所知,这是首次在线 EEG 分类内隐言语的报告。我们的发现支持进一步研究内隐言语作为 BCI 激活任务,可能会开发出更直观的交流 BCI。