Suppr超能文献

打鼾——声学定义。

Snoring - An Acoustic Definition.

作者信息

Janott Christoph, Rohrmeier Christian, Schmitt Maximilian, Hemmert Werner, Schuller Bjorn

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3653-3657. doi: 10.1109/EMBC.2019.8856615.

Abstract

Objective- The distinction of snoring and loud breathing is often subjective and lies in the ear of the beholder. The aim of this study is to identify and assess acoustic features with a high suitability to distinguish these two classes of sound, in order to facilitate an objective definition of snoring based on acoustic parameters. Methods- A corpus of snore and breath sounds from 23 subjects has been used that were classified by 25 human raters. Using the openSMILE feature extractor, 6 373 acoustic features have been evaluated for their selectivity comparing SVM classification, logistic regression, and the recall of each single feature. Results- Most selective single features were several statistical functionals of the first and second mel frequency spectrum-generated perceptual linear predictive (PLP) cepstral coefficient with an unweighted average recall (UAR) of up to 93.8%. The best performing feature sets were low level descriptors (LLDs), derivatives and statistical functionals based on fast Fourier transformation (FFT), with a UAR of 93.0%, and on the summed mel frequency spectrum-generated PLP cepstral coefficients, with a UAR of 92.2% using SVM classification. Compared to SVM classification, logistic regression did not show considerable differences in classification performance. Conclusion- It could be shown that snoring and loud breathing can be distinguished by robust acoustic features. The findings might serve as a guidance to find a consensus for an objective definition of snoring compared to loud breathing.

摘要

目的——打鼾声和呼吸声的区分往往具有主观性,取决于观察者的判断。本研究的目的是识别和评估高度适合区分这两类声音的声学特征,以便基于声学参数对打鼾进行客观定义。方法——使用了来自23名受试者的打鼾声和呼吸声语料库,由25名人类评分者进行分类。使用openSMILE特征提取器,通过支持向量机分类、逻辑回归以及每个单一特征的召回率,对6373个声学特征的选择性进行了评估。结果——最具选择性的单一特征是第一和第二梅尔频率谱生成的感知线性预测(PLP)倒谱系数的几个统计泛函,未加权平均召回率(UAR)高达93.8%。表现最佳的特征集是基于快速傅里叶变换(FFT)的低层次描述符(LLD)、导数和统计泛函,使用支持向量机分类时UAR为93.0%;基于梅尔频率谱总和生成的PLP倒谱系数,UAR为92.2%。与支持向量机分类相比,逻辑回归在分类性能上没有显著差异。结论——结果表明,打鼾声和呼吸声可以通过稳健的声学特征进行区分。这些发现可能为与呼吸声相比,达成打鼾客观定义的共识提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验