Udhayakumar Radhagayathri K, Karmakar Chandan, Palaniswami Marimuthu
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4588-4591. doi: 10.1109/EMBC.2019.8857297.
Elevation or depression in an electrocardiographic ST segment is an important indication of cardiac Ischemia. Computer-aided algorithms have been proposed in the recent past for the detection of ST change in ECG signals. Such algorithms are accompanied by difficulty in locating a functional ST segment from the ECG. Laborious signal processing tasks have to be carried out in order to precisely locate the start and end of an ST segment. In this work, we propose to detect ST change from heart rate variability (HRV) or RR-interval signals, rather than the ECG itself. Since HRV analysis does not require ST segment localization, we hypothesize an easier and more accurate automated ST change detection here. We use the recent concept of entropy profiling to detect ST change from RR interval data, where the estimation corresponds to irregularity information contained in the respective signals. We have compared results of SampEn, FuzzyEn and TotalSampEn (entropy profiling) on 18 normal and 28 ST-changed RR interval signals. SampEn and FuzzyEn give maximum AUCs of 0.64 and 0.62 respectively, at the data length N = 750. T otalSampEn shows a maximum AUC of 0.92 at N = 50, clearly proving its effectiveness on short-term signals and an AUC of 0.88 at N = 750, proving its efficiency over SampEn and F uzzyEn.
心电图ST段的抬高或压低是心肌缺血的重要指征。近年来,人们提出了计算机辅助算法来检测心电图信号中的ST段变化。此类算法在从心电图中定位功能性ST段时存在困难。为了精确确定ST段的起始和结束位置,必须执行繁琐的信号处理任务。在这项工作中,我们建议从心率变异性(HRV)或RR间期信号中检测ST段变化,而不是从心电图本身进行检测。由于HRV分析不需要定位ST段,我们推测在此处进行自动化ST段变化检测会更容易且更准确。我们使用熵分析的最新概念从RR间期数据中检测ST段变化,其中的估计对应于各个信号中包含的不规则性信息。我们比较了SampEn、FuzzyEn和TotalSampEn(熵分析)在18个正常RR间期信号和28个ST段改变的RR间期信号上的结果。在数据长度N = 750时,SampEn和FuzzyEn的最大曲线下面积(AUC)分别为0.64和0.62。TotalSampEn在N = 50时显示最大AUC为0.92,清楚地证明了其在短期信号上的有效性,在N = 750时AUC为0.88,证明了其优于SampEn和FuzzyEn的效率。