Keenan Emerson, Udhayakumar Radhagayrathi K, Karmakar Chandan K, Brownfoot Fiona C, Palaniswami Marimuthu
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:621-624. doi: 10.1109/EMBC44109.2020.9175892.
The use of fetal heart rate (FHR) recordings for assessing fetal wellbeing is an integral component of obstetric care. Recently, non-invasive fetal electrocardiography (NI-FECG) has demonstrated utility for accurately diagnosing fetal arrhythmias via clinician interpretation. In this work, we introduce the use of data-driven entropy profiling to automatically detect fetal arrhythmias in short length FHR recordings obtained via NI-FECG. Using an open access dataset of 11 normal and 11 arrhythmic fetuses, our method (TotalSampEn) achieves excellent classification performance (AUC = 0.98) for detecting fetal arrhythmias in a short time window (i.e. under 10 minutes). We demonstrate that our method outperforms SampEn (AUC = 0.72) and FuzzyEn (AUC = 0.74) based estimates, proving its effectiveness for this task. The rapid detection provided by our approach may enable efficient triage of concerning FHR recordings for clinician review.
使用胎儿心率(FHR)记录来评估胎儿健康状况是产科护理的一个重要组成部分。最近,无创胎儿心电图(NI-FECG)已显示出通过临床医生解读准确诊断胎儿心律失常的效用。在这项工作中,我们介绍了使用数据驱动的熵分析方法,以自动检测通过NI-FECG获得的短时长FHR记录中的胎儿心律失常。利用一个包含11例正常胎儿和11例心律失常胎儿的开放获取数据集,我们的方法(TotalSampEn)在短时间窗口(即10分钟以内)检测胎儿心律失常方面实现了出色的分类性能(AUC = 0.98)。我们证明,我们的方法优于基于样本熵(SampEn,AUC = 0.72)和模糊熵(FuzzyEn,AUC = 0.74)的估计方法,证明了其在此任务中的有效性。我们的方法提供的快速检测可能有助于对令人担忧的FHR记录进行有效分诊,以供临床医生审查。