Suppr超能文献

利用样本熵谱理解短期 HRV 信号的不规则特征。

Understanding Irregularity Characteristics of Short-Term HRV Signals Using Sample Entropy Profile.

出版信息

IEEE Trans Biomed Eng. 2018 Nov;65(11):2569-2579. doi: 10.1109/TBME.2018.2808271. Epub 2018 Feb 20.

Abstract

Sample entropy (), a popularly used "regularity analysis" tool, has restrictions in handling short-term segments (largely ) of heart rate variability (HRV) data. For such short signals, the estimate either remains undefined or fails to retrieve "accurate" regularity information. These limitations arise due to the extreme dependence of on its functional parameters, in particular the tolerance . Evaluating at a single random choice of parameter is a major cause of concern in being able to extract reliable and complete regularity information from a given signal. Here, we hypothesize that, finding a complete profile of (in contrast to a single estimate) corresponding to a data specific set of values may facilitate enhanced information retrieval from short-term signals. We introduce a novel and computationally efficient concept of profiling in order to eliminate existing inaccuracies seen in the case of estimation. Using three different HRV datasets from the PhysioNet database-first, real and simulated, second, elderly and young, and third, healthy and arrhythmic; we demonstrate better definiteness and classification performance of profile based estimates ( and ) when compared to conventional and estimates. Our novelty is to identify the importance of reliability in short-term signal regularity analysis, and our proposed approach aims to enhance both quality and quantity of information from any short-term signal.

摘要

样本熵()是一种常用的“规则性分析”工具,在处理短期的心率变异性(HRV)数据片段时存在限制。对于如此短的信号,估计要么未定义,要么无法获取“准确”的规则信息。这些限制源于对其功能参数的极度依赖,特别是容限。在单个随机参数选择上进行评估是从给定信号中提取可靠和完整规则信息的主要关注点。在这里,我们假设找到与特定数据集合值相对应的完整(而不是单个估计),可能有助于从短期信号中增强信息检索。我们引入了一种新颖且计算效率高的分析方法,以消除在估计过程中出现的现有不准确性。使用 PhysioNet 数据库中的三个不同的 HRV 数据集——首先是真实和模拟的数据集,其次是老年人和年轻人的数据集,以及第三是健康和心律失常的数据集;与传统的估计相比,我们展示了基于分析的估计(和)在确定性和分类性能方面的优势。我们的新颖之处在于确定了短期信号规则性分析中可靠性的重要性,并且我们提出的方法旨在增强任何短期信号的质量和信息量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验