Sharma Piyush, Rodriguez-Villegas Esther
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6343-6346. doi: 10.1109/EMBC.2019.8857525.
Heart rate variability (HRV) is an important noninvasive parameter to monitor the activity of the autonomic nervous system. This paper proposes an algorithm to analyze HRV by processing the acoustic data, recorded by placing a small, wearable sensor on the suprasternal notch (at neck) of an adult subject, primarily intended to record breathing sounds. The method used an empirical data analysis approach of the Hilbert-Huang transform (HHT) to construct an instantaneous energy envelope and segment the cardiac cycle by detecting S1 and S2 sounds using the K-means algorithm. The time-domain HRV analysis for the short-term recordings of 10 subjects demonstrated a close agreement with the reference ECG signal. The instantaneous heart rate (IHR) comparisons yielded an accuracy of 95.78% and 92.35% for S1 and S2 sounds respectively. The experimental results showed that the proposed algorithm can provide an accurate HRV analysis for the cardiac signals recorded at the neck.
心率变异性(HRV)是监测自主神经系统活动的一个重要无创参数。本文提出了一种算法,通过处理声学数据来分析HRV,这些声学数据是通过在成年受试者的胸骨上切迹(颈部)放置一个小型可穿戴传感器记录的,主要用于记录呼吸音。该方法采用希尔伯特-黄变换(HHT)的经验数据分析方法来构建瞬时能量包络,并使用K均值算法通过检测S1和S2声音来分割心动周期。对10名受试者的短期记录进行的时域HRV分析表明,与参考心电图信号高度吻合。对于S1和S2声音,瞬时心率(IHR)比较的准确率分别为95.78%和92.35%。实验结果表明,所提出的算法能够对在颈部记录的心脏信号进行准确的HRV分析。