Suppr超能文献

不同训练负荷量化和建模方法对优秀游泳运动员成绩预测的影响。

The impact of different training load quantification and modelling methodologies on performance predictions in elite swimmers.

作者信息

Mitchell Lachlan J G, Rattray Ben, Fowlie John, Saunders Philo U, Pyne David B

机构信息

Australian Institute of Sport, Bruce, Australia.

Research Institute for Sport and Exercise, University of Canberra, Bruce, Australia.

出版信息

Eur J Sport Sci. 2020 Nov;20(10):1329-1338. doi: 10.1080/17461391.2020.1719211. Epub 2020 Feb 4.

Abstract

The use of rolling averages to analyse training data has been debated recently. We evaluated two training load quantification methods (five-zone, seven-zone) fitted to performances over two race distances (50 and 100 m) using four separate longitudinal models (Banister, Busso. rolling averages and exponentially weighted rolling averages) for three swimmers ranked in the top 8 in the world. A total of 1610 daily load measures and 108 performances were collected. Banister (standard error of the estimate (SEE) 0.64 and 0.62 s; five-zone and seven-zone quantification methods), Busso (SEE 0.73 and 0.70 s) and exponentially weighted rolling averages (SEE 0.57 and 0.63 s) models fitted more accurately ( < 0.001) than the rolling averages approach (SEE 1.32 and 1.36 s). The seven-zone quantification method did not produce more accurate performance predictions than the five-zone method, despite being a more detailed form of training load quantification. Four neural network models were fitted and had a lower error (SEE 0.38, 0.41, 0.35 and 0.60 s) than all longitudinal models, but did not track as predictably over time. Exponentially weighted impulse-response models and exponentially weighted rolling averages appear more effective at predicting performance using training load data in elite swimmers than a rolling averages approach.

摘要

最近,使用移动平均值来分析训练数据一直存在争议。我们使用四种不同的纵向模型(班尼斯特模型、布索模型、移动平均值模型和指数加权移动平均值模型),对世界排名前8的三名游泳运动员在两个比赛距离(50米和100米)的成绩进行了评估,以拟合两种训练负荷量化方法(五区法、七区法)。总共收集了1610个每日负荷测量值和108次成绩。班尼斯特模型(估计标准误差(SEE)为0.64和0.62秒;五区法和七区法量化方法)、布索模型(SEE为0.73和0.70秒)和指数加权移动平均值模型(SEE为0.57和0.63秒)比移动平均值方法(SEE为1.32和1.36秒)拟合得更准确(<0.001)。尽管七区量化方法是一种更详细的训练负荷量化形式,但它并没有比五区方法产生更准确的成绩预测。拟合了四个神经网络模型,其误差(SEE为0.38、0.41、0.35和0.60秒)低于所有纵向模型,但随着时间推移跟踪效果不如纵向模型可预测。与移动平均值方法相比,指数加权脉冲响应模型和指数加权移动平均值在使用精英游泳运动员的训练负荷数据预测成绩方面似乎更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验