Suppr超能文献

机器学习算法在抗癌肽预测和设计中的应用进展。

Evolution of Machine Learning Algorithms in the Prediction and Design of Anticancer Peptides.

机构信息

Department of Physiology, Ajou University School of Medicine, Suwon, Korea.

出版信息

Curr Protein Pept Sci. 2020;21(12):1242-1250. doi: 10.2174/1389203721666200117171403.

Abstract

Peptides act as promising anticancer agents due to their ease of synthesis and modifications, enhanced tumor penetration, and less systemic toxicity. However, only limited success has been achieved so far, as experimental design and synthesis of anticancer peptides (ACPs) are prohibitively costly and time-consuming. Furthermore, the sequential increase in the protein sequence data via highthroughput sequencing makes it difficult to identify ACPs only through experimentation, which often involves months or years of speculation and failure. All these limitations could be overcome by applying machine learning (ML) approaches, which is a field of artificial intelligence that automates analytical model building for rapid and accurate outcome predictions. Recently, ML approaches hold great promise in the rapid discovery of ACPs, which could be witnessed by the growing number of MLbased anticancer prediction tools. In this review, we aim to provide a comprehensive view on the existing ML approaches for ACP predictions. Initially, we will briefly discuss the currently available ACP databases. This is followed by the main text, where state-of-the-art ML approaches working principles and their performances based on the ML algorithms are reviewed. Lastly, we discuss the limitations and future directions of the ML methods in the prediction of ACPs.

摘要

肽由于其易于合成和修饰、增强的肿瘤穿透性以及较低的全身毒性,被认为是很有前途的抗癌药物。然而,到目前为止,只有有限的成功,因为抗癌肽 (ACP) 的实验设计和合成成本高昂且耗时。此外,高通量测序导致的蛋白质序列数据的顺序增加使得仅通过实验来识别 ACP 变得困难,这通常涉及数月或数年的推测和失败。所有这些限制都可以通过应用机器学习 (ML) 方法来克服,这是人工智能的一个领域,它可以自动构建分析模型,以实现快速准确的结果预测。最近,ML 方法在快速发现 ACP 方面有很大的应用前景,这可以从越来越多的基于 ML 的抗癌预测工具中得到证明。在这篇综述中,我们旨在对现有的 ACP 预测 ML 方法提供全面的了解。首先,我们将简要讨论目前可用的 ACP 数据库。接下来是正文,其中回顾了基于 ML 算法的最先进的 ML 方法的工作原理及其性能。最后,我们讨论了 ML 方法在 ACP 预测中的局限性和未来方向。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验