Suppr超能文献

卟啉金属组装体的自组装和癌症光动力疗法。

Self-Assembly of Porphyrin-Containing Metalla-Assemblies and Cancer Photodynamic Therapy.

机构信息

Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China.

Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States.

出版信息

Inorg Chem. 2020 Jun 1;59(11):7380-7388. doi: 10.1021/acs.inorgchem.9b02775. Epub 2020 Jan 21.

Abstract

In this report, we describe the synthesis of two porphyrin-containing Pt(II) supramolecular assemblies via coordination-driven self-assembly. X-ray crystallographic analysis on one assembly reveals that the metalla-assembly formation imposes large interchromophore distances, leading to a higher O generation efficiency, relative to the corresponding small molecular precursors. The metalla-assemblies were examined as photosensitizers for photodynamic therapy as the potential reduction of the unfavorable self-aggregation phenomenon. In vivo and in vitro investigations demonstrate that the metalla-assemblies exhibit enhanced anticancer activity with minimal dose requirement and side effects comparable to the small molecule precursors. Thus, our work demonstrates that self-assembly provides a promising methodology for enhancing the therapeutic effectiveness of anticancer agents.

摘要

在本报告中,我们描述了通过配位驱动自组装合成的两种含卟啉的 Pt(II) 超分子组装体。对一个组装体的 X 射线晶体学分析表明,金属组装体的形成导致了较大的发色团间距离,从而相对于相应的小分子前体具有更高的 O 生成效率。这些金属组装体被用作光动力治疗的光敏剂,以潜在减少不利的自聚集现象。体内和体外研究表明,金属组装体在最小剂量要求下表现出增强的抗癌活性,且副作用与小分子前体相当。因此,我们的工作表明,自组装为增强抗癌药物的治疗效果提供了一种很有前途的方法。

相似文献

1
Self-Assembly of Porphyrin-Containing Metalla-Assemblies and Cancer Photodynamic Therapy.
Inorg Chem. 2020 Jun 1;59(11):7380-7388. doi: 10.1021/acs.inorgchem.9b02775. Epub 2020 Jan 21.
2
Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer.
Bioorg Med Chem. 2021 Jan 15;30:115926. doi: 10.1016/j.bmc.2020.115926. Epub 2020 Dec 9.
3
Platinated porphyrin as a new organelle and nucleus dual-targeted photosensitizer for photodynamic therapy.
Org Biomol Chem. 2017 Jul 21;15(27):5764-5771. doi: 10.1039/c7ob01003f. Epub 2017 Jun 29.
4
Enhanced photodynamic therapy through supramolecular photosensitizers with an adamantyl-functionalized porphyrin and a cyclodextrin dimer.
Chem Commun (Camb). 2020 Sep 25;56(75):11134-11137. doi: 10.1039/d0cc03574b. Epub 2020 Aug 20.
6
Highly Emissive Self-Assembled BODIPY-Platinum Supramolecular Triangles.
J Am Chem Soc. 2018 Jun 20;140(24):7730-7736. doi: 10.1021/jacs.8b04929. Epub 2018 Jun 11.
9
Selenium-engineered covalent organic frameworks for high-efficiency and long-acting cancer therapy.
Chem Commun (Camb). 2021 Jun 22;57(50):6145-6148. doi: 10.1039/d1cc01830b.
10
Palladium porphyrin complexes for photodynamic cancer therapy: effect of porphyrin units and metal.
Photochem Photobiol Sci. 2020 Jul 1;19(7):905-912. doi: 10.1039/c9pp00363k. Epub 2020 May 5.

引用本文的文献

1
2
Supramolecular Assemblies Showing Thermally Activated Delayed Fluorescence.
Small Sci. 2021 Jun 4;1(12):2100022. doi: 10.1002/smsc.202100022. eCollection 2021 Dec.
3
Application of nanomaterials in precision treatment of lung cancer.
iScience. 2024 Dec 26;28(1):111704. doi: 10.1016/j.isci.2024.111704. eCollection 2025 Jan 17.
4
Applications of supramolecular assemblies in drug delivery and photodynamic therapy.
RSC Med Chem. 2023 Oct 5;14(12):2438-2458. doi: 10.1039/d3md00396e. eCollection 2023 Dec 13.
5
Thermally-induced atropisomerism promotes metal-organic cage construction.
Nat Commun. 2023 Dec 9;14(1):8166. doi: 10.1038/s41467-023-43756-4.
6
Nanotherapeutic Intervention in Photodynamic Therapy for Cancer.
ACS Omega. 2022 Dec 6;7(50):45882-45909. doi: 10.1021/acsomega.2c05852. eCollection 2022 Dec 20.
8
Metal-Coordinated Supramolecular Self-Assemblies for Cancer Theranostics.
Adv Sci (Weinh). 2021 Aug;8(16):e2101101. doi: 10.1002/advs.202101101. Epub 2021 Jun 18.
9
Polymeric Systems Containing Supramolecular Coordination Complexes for Drug Delivery.
Polymers (Basel). 2021 Jan 25;13(3):370. doi: 10.3390/polym13030370.

本文引用的文献

1
Biomedically Relevant Self-Assembled Metallacycles and Metallacages.
J Am Chem Soc. 2019 Sep 11;141(36):14005-14020. doi: 10.1021/jacs.9b06222. Epub 2019 Aug 29.
2
Recent progress in nanoscale metal-organic frameworks for drug release and cancer therapy.
Nanomedicine (Lond). 2019 May;14(10):1343-1365. doi: 10.2217/nnm-2018-0347. Epub 2019 May 14.
3
Deciphering the intersystem crossing in near-infrared BODIPY photosensitizers for highly efficient photodynamic therapy.
Chem Sci. 2019 Jan 22;10(10):3096-3102. doi: 10.1039/c8sc04840a. eCollection 2019 Mar 14.
4
Waterproof architectures through subcomponent self-assembly.
Chem Sci. 2018 Dec 12;10(7):2006-2018. doi: 10.1039/c8sc05085f. eCollection 2019 Feb 21.
8
Selective Extraction of C by a Tetragonal Prismatic Porphyrin Cage.
J Am Chem Soc. 2018 Oct 24;140(42):13835-13842. doi: 10.1021/jacs.8b08555. Epub 2018 Oct 15.
9
Otherwise Unstable Structures Self-Assemble in the Cavities of Cuboctahedral Coordination Cages.
J Am Chem Soc. 2018 Sep 12;140(36):11502-11509. doi: 10.1021/jacs.8b07494. Epub 2018 Aug 30.
10
Photoswitching topology in polymer networks with metal-organic cages as crosslinks.
Nature. 2018 Aug;560(7716):65-69. doi: 10.1038/s41586-018-0339-0. Epub 2018 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验