Department of Systems Biology, Columbia University, New York, United States.
HMS LINCS Center Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, United States.
Elife. 2020 Jan 21;9:e50342. doi: 10.7554/eLife.50342.
Detecting relative rather than absolute changes in extracellular signals enables cells to make decisions in constantly fluctuating environments. It is currently not well understood how mammalian signaling networks store the memories of past stimuli and subsequently use them to compute relative signals, that is perform fold change detection. Using the growth factor-activated PI3K-Akt signaling pathway, we develop here computational and analytical models, and experimentally validate a novel non-transcriptional mechanism of relative sensing in mammalian cells. This mechanism relies on a new form of cellular memory, where cells effectively encode past stimulation levels in the abundance of cognate receptors on the cell surface. The surface receptor abundance is regulated by background signal-dependent receptor endocytosis and down-regulation. We show the robustness and specificity of relative sensing for two physiologically important ligands, epidermal growth factor (EGF) and hepatocyte growth factor (HGF), and across wide ranges of background stimuli. Our results suggest that similar mechanisms of cell memory and fold change detection may be important in diverse signaling cascades and multiple biological contexts.
检测细胞外信号的相对变化而非绝对变化,使细胞能够在不断变化的环境中做出决策。目前,人们还不太清楚哺乳动物信号网络如何存储过去刺激的记忆,并随后利用这些记忆来计算相对信号,即执行倍数变化检测。在这里,我们使用生长因子激活的 PI3K-Akt 信号通路,开发了计算和分析模型,并通过实验验证了哺乳动物细胞中相对感应的一种新的非转录机制。这种机制依赖于一种新的细胞记忆形式,其中细胞在细胞表面上的同源受体丰度中有效地编码过去的刺激水平。表面受体丰度受背景信号依赖性受体内吞作用和下调调节。我们展示了相对感应对于两种生理上重要的配体表皮生长因子(EGF)和肝细胞生长因子(HGF)的稳健性和特异性,以及在广泛的背景刺激范围内。我们的结果表明,细胞记忆和倍数变化检测的类似机制可能在不同的信号级联和多种生物学背景中很重要。