Suppr超能文献

从异质单细胞信息传递的时空整合中出现的同步多细胞机械感知。

Emergence of synchronized multicellular mechanosensing from spatiotemporal integration of heterogeneous single-cell information transfer.

机构信息

Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.

Department of Physics, Oregon State University, Corvallis, OR 97331, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.

出版信息

Cell Syst. 2022 Sep 21;13(9):711-723.e7. doi: 10.1016/j.cels.2022.07.002. Epub 2022 Aug 2.

Abstract

Multicellular synchronization is a ubiquitous phenomenon in living systems. However, how noisy and heterogeneous behaviors of individual cells are integrated across a population toward multicellular synchronization is unclear. Here, we study the process of multicellular calcium synchronization of the endothelial cell monolayer in response to mechanical stimuli. We applied information theory to quantify the asymmetric information transfer between pairs of cells and defined quantitative measures to how single cells receive or transmit information within a multicellular network. Our analysis revealed that multicellular synchronization was established by gradual enhancement of information spread from the single cell to the multicellular scale. Synchronization was associated with heterogeneity in the cells' communication properties, reinforcement of the cells' state, and information flow. Altogether, we suggest a phenomenological model where cells gradually learn their local environment, adjust, and reinforce their internal state to stabilize the multicellular network architecture to support information flow from local to global scales toward multicellular synchronization.

摘要

细胞的同步化是生命系统中普遍存在的现象。然而,细胞个体的噪声和异质性行为是如何在群体水平上整合为细胞的同步化仍不清楚。在这里,我们研究了内皮细胞单层对机械刺激的钙信号同步化的过程。我们应用信息论来量化细胞间的不对称信息传递,并定义了定量指标来描述单细胞在细胞网络中接收或传递信息的能力。我们的分析表明,细胞的同步化是通过从单细胞到多细胞水平逐渐增强信息传播而建立的。同步化与细胞通讯特性的异质性、细胞状态的增强和信息流有关。总的来说,我们提出了一个现象学模型,其中细胞逐渐了解其局部环境,调整和增强其内部状态,以稳定多细胞网络结构,支持从局部到全局尺度的信息流,从而实现细胞的同步化。

相似文献

2
Formation of recurring transient Ca-based intercellular communities during hematopoiesis.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2318155121. doi: 10.1073/pnas.2318155121. Epub 2024 Apr 11.
3
Temporal signals drive the emergence of multicellular information networks.
Proc Natl Acad Sci U S A. 2022 Sep 13;119(37):e2202204119. doi: 10.1073/pnas.2202204119. Epub 2022 Sep 6.
4
Synchronization of Bioelectric Oscillations in Networks of Nonexcitable Cells: From Single-Cell to Multicellular States.
J Phys Chem B. 2019 May 9;123(18):3924-3934. doi: 10.1021/acs.jpcb.9b01717. Epub 2019 Apr 30.
5
Communication theory and multicellular biology.
Integr Biol (Camb). 2011 Apr;3(4):350-67. doi: 10.1039/c0ib00117a. Epub 2011 Mar 22.
7
Global interactions, information flow, and chaos synchronization.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Oct;88(4):042920. doi: 10.1103/PhysRevE.88.042920. Epub 2013 Oct 22.
9
Intercellular communication induces glycolytic synchronization waves between individually oscillating cells.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2010075118.
10
Talking over the extracellular matrix: How do cells communicate mechanically?
Semin Cell Dev Biol. 2017 Nov;71:99-105. doi: 10.1016/j.semcdb.2017.06.010. Epub 2017 Jun 16.

引用本文的文献

1
Skin capillary endothelial cells form a network of spatiotemporally conserved Ca activity.
bioRxiv. 2025 Aug 20:2025.08.15.669933. doi: 10.1101/2025.08.15.669933.
2
Collective Dynamics of Frustrated Biological Neuron Networks.
PRX Life. 2025 Jul-Sep;3(3). doi: 10.1103/1258-cl48. Epub 2025 Jul 2.
4
The collective dynamics of frustrated biological neuron networks.
Res Sq. 2024 Apr 5:rs.3.rs-4006823. doi: 10.21203/rs.3.rs-4006823/v1.
5
Formation of recurring transient Ca-based intercellular communities during hematopoiesis.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2318155121. doi: 10.1073/pnas.2318155121. Epub 2024 Apr 11.
7
Cell state transitions: catch them if you can.
Development. 2023 Mar 15;150(6). doi: 10.1242/dev.201139. Epub 2023 Mar 17.
8
Emerging machine learning approaches to phenotyping cellular motility and morphodynamics.
Phys Biol. 2021 Jun 17;18(4). doi: 10.1088/1478-3975/abffbe.

本文引用的文献

1
Inference of long-range cell-cell force transmission from ECM remodeling fluctuations.
Commun Biol. 2023 Aug 3;6(1):811. doi: 10.1038/s42003-023-05179-1.
2
A gap-junction-mediated, calcium-signaling network controls blood progenitor fate decisions in hematopoiesis.
Curr Biol. 2021 Nov 8;31(21):4697-4712.e6. doi: 10.1016/j.cub.2021.08.027. Epub 2021 Sep 3.
3
Dynamics of diffusive cell signaling relays.
Elife. 2020 Dec 4;9:e61771. doi: 10.7554/eLife.61771.
4
Design principles of tissue organisation: How single cells coordinate across scales.
Curr Opin Cell Biol. 2020 Dec;67:37-45. doi: 10.1016/j.ceb.2020.07.004. Epub 2020 Sep 2.
5
The role of single cell mechanical behavior and polarity in driving collective cell migration.
Nat Phys. 2020 Jul;16(7):802-809. doi: 10.1038/s41567-020-0875-z. Epub 2020 May 4.
6
A Live-Cell Screen for Altered Erk Dynamics Reveals Principles of Proliferative Control.
Cell Syst. 2020 Mar 25;10(3):240-253.e6. doi: 10.1016/j.cels.2020.02.005. Epub 2020 Mar 18.
7
Macrophages employ quorum licensing to regulate collective activation.
Nat Commun. 2020 Feb 13;11(1):878. doi: 10.1038/s41467-020-14547-y.
9
Evidence of conditioned behavior in amoebae.
Nat Commun. 2019 Aug 15;10(1):3690. doi: 10.1038/s41467-019-11677-w.
10
Endothelial Cell Mechanotransduction in the Dynamic Vascular Environment.
Adv Biosyst. 2019 Feb;3(2):e1800252. doi: 10.1002/adbi.201800252. Epub 2018 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验