Wang Hanyu, Luo Hu, Yang Lang, Liu Xingchong, Li Haimin, Liu Shuqian, Tang Yanling, Ye Zongbiao, Long Wei
School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China.
Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
ACS Appl Mater Interfaces. 2024 Jan 31;16(4):4854-4862. doi: 10.1021/acsami.3c17743. Epub 2024 Jan 22.
In halide perovskite solar cells (PSCs), moderate lead iodide (PbI) can enhance device efficiency by providing some passivation effects, but extremely active PbI leads to the current density-voltage hysteresis effect and device instability. In addition, defects distributed on the buried interface of tin oxide (SnO)/perovskite will lead to the photogenerated carrier recombination. Here, rubidium chloride (RbCl) is introduced at the buried SnO/perovskite interface, which not only acts as an interfacial passivator to interact with the uncoordinated tin ions (Sn) and fill the oxygen vacancy on the SnO surface but also converts PbI into an inactive (PbI)RbCl compound to stabilize the perovskite phase via a bottom-up evolution effect. These synergistic effects deliver a champion PCE of 22.13% with suppressed hysteresis for the W RbCl PSCs, in combination with enhanced environmental and thermal stability. This work demonstrates that the interfacial defect passivation and bottom-up excess PbI management using RbCl modifiers are promising strategies to address the outstanding challenges associated with PSCs.
在卤化物钙钛矿太阳能电池(PSC)中,适度的碘化铅(PbI)可通过提供一些钝化作用来提高器件效率,但活性极高的PbI会导致电流密度-电压滞后效应和器件不稳定性。此外,分布在氧化锡(SnO)/钙钛矿掩埋界面上的缺陷会导致光生载流子复合。在此,在掩埋的SnO/钙钛矿界面处引入氯化铷(RbCl),它不仅作为界面钝化剂与未配位的锡离子(Sn)相互作用并填充SnO表面的氧空位,还通过自下而上的演化效应将PbI转化为非活性的(PbI)RbCl化合物以稳定钙钛矿相。这些协同效应使含W RbCl的PSC实现了22.13%的最佳功率转换效率(PCE),同时滞后现象得到抑制,环境稳定性和热稳定性也有所增强。这项工作表明,使用RbCl改性剂进行界面缺陷钝化和自下而上的过量PbI管理是应对PSC相关突出挑战的有前景的策略。