Mirolo Marta, Leanza Daniela, Höltschi Laura, Jordy Christian, Pelé Vincent, Novák Petr, El Kazzi Mario, Vaz Carlos A F
Paul Scherrer Institut, Electrochemistry Laboratory , CH-5232 Villigen PSI , Switzerland.
Paul Scherrer Institut, Swiss Light Source , CH-5232 Villigen PSI , Switzerland.
Anal Chem. 2020 Feb 18;92(4):3023-3031. doi: 10.1021/acs.analchem.9b04124. Epub 2020 Feb 3.
X-ray photoemission electron microscopy (XPEEM), with its excellent spatial resolution, is a well-suited technique for elucidating the complex electrode-electrolyte interface reactions in Li-ion batteries. It provides element-specific contrast images that allows the study of the surface morphology and the identification of the various components of the composite electrode. It also enables the acquisition of local X-ray absorption spectra (XAS) on single particles of the electrode, such as the C and O K-edges to track the stability of carbonate-based electrolytes, F K-edge to study the electrolyte salt and binder stability, and the transition metal L-edges to gain insights into the oxidation/reduction processes of positive and negative active materials. Here we discuss the optimal measurement conditions for XPEEM studies of Li-ion battery systems, including (i) electrode preparation through mechanical pressing to reduce surface roughness for improved spatial resolution; (ii) corrections of the XAS spectra at the C K-edge to remove the carbon signal contribution originating from the X-ray optics; and (iii) procedures for minimizing the effect of beam damage. Examples from our recent work are provided to demonstrate the strength of XPEEM to solve challenging interface reaction mechanisms via measurements. Finally, we present a first XPEEM cell dedicated to experiments in all-solid-state batteries. Representative measurements were carried out on a graphite electrode cycled with LiI-incorporated sulfide-based electrolyte. This measurement demonstrates the strong competitive reactions between the lithiated graphite surface and the LiO formation caused by the reaction of the intercalated lithium with the residual oxygen in the vacuum chamber. Moreover, we show the versatility of the operando XPEEM cell to investigate other active materials, for example, LiTiO.
X射线光电子能谱显微镜(XPEEM)具有出色的空间分辨率,是一种非常适合用于阐明锂离子电池中复杂电极-电解质界面反应的技术。它提供元素特异性对比图像,可用于研究复合电极的表面形态并识别其各种成分。它还能够获取电极单个颗粒上的局部X射线吸收光谱(XAS),例如C和O K边以追踪碳酸盐基电解质的稳定性,F K边以研究电解质盐和粘结剂的稳定性,以及过渡金属L边以深入了解正负极活性材料的氧化/还原过程。在此,我们讨论锂离子电池系统XPEEM研究的最佳测量条件,包括:(i)通过机械压制制备电极以降低表面粗糙度,从而提高空间分辨率;(ii)对C K边的XAS光谱进行校正,以去除源自X射线光学元件的碳信号贡献;(iii)将束流损伤影响降至最低的程序。我们提供了近期工作中的实例,以展示XPEEM通过测量解决具有挑战性的界面反应机制的优势。最后,我们展示了首个专门用于全固态电池实验的XPEEM电池。对使用掺入LiI的硫化物基电解质循环的石墨电极进行了代表性测量。该测量表明,锂化石墨表面与由于插入的锂与真空腔室中的残余氧反应而导致的LiO形成之间存在强烈的竞争反应。此外,我们展示了原位XPEEM电池在研究其他活性材料(例如LiTiO)方面的多功能性