Suppr超能文献

离子液体在模型电极表面上的结构形成和表面化学-锂离子电池中电极-电解质界面的模型研究。

Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode electrolyte interface in Li-ion batteries.

机构信息

Helmholtz Institute Ulm Electrochemical Energy Storage (HIU), Helmholtzstraße 11, D-89081 Ulm, Germany.

Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany.

出版信息

J Chem Phys. 2018 May 21;148(19):193821. doi: 10.1063/1.5012878.

Abstract

Ionic liquids (ILs) are considered as attractive electrolyte solvents in modern battery concepts such as Li-ion batteries. Here we present a comprehensive review of the results of previous model studies on the interaction of the battery relevant IL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMP][TFSI]) with a series of structurally and chemically well-defined model electrode surfaces, which are increasingly complex and relevant for battery applications [Ag(111), Au(111), Cu(111), pristine and lithiated highly oriented pyrolytic graphite (HOPG), and rutile TiO(110)]. Combining surface science techniques such as high resolution scanning tunneling microscopy and X-ray photoelectron spectroscopy for characterizing surface structure and chemical composition in deposited (sub-)monolayer adlayers with dispersion corrected density functional theory based calculations, this work aims at a molecular scale understanding of the fundamental processes at the electrode | electrolyte interface, which are crucial for the development of the so-called solid electrolyte interphase (SEI) layer in batteries. Performed under idealized conditions, in an ultrahigh vacuum environment, these model studies provide detailed insights on the structure formation in the adlayer, the substrate-adsorbate and adsorbate-adsorbate interactions responsible for this, and the tendency for chemically induced decomposition of the IL. To mimic the situation in an electrolyte, we also investigated the interaction of adsorbed IL (sub-)monolayers with coadsorbed lithium. Even at 80 K, postdeposited Li is found to react with the IL, leading to decomposition products such as LiF, LiN, LiS, LiSO, and LiO. In the absence of a [BMP][TFSI] adlayer, it tends to adsorb, dissolve, or intercalate into the substrate (metals, HOPG) or to react with the substrate (TiO) above a critical temperature, forming LiO and Ti species in the latter case. Finally, the formation of stable decomposition products was found to sensitively change the equilibrium between surface Li and Li intercalated in the bulk, leading to a deintercalation from lithiated HOPG in the presence of an adsorbed IL adlayer at >230 K. Overall, these results provide detailed insights into the surface chemistry at the solid | electrolyte interface and the initial stages of SEI formation at electrode surfaces in the absence of an applied potential, which is essential for the further improvement of future Li-ion batteries.

摘要

离子液体 (ILs) 被认为是锂离子电池等现代电池概念中有吸引力的电解质溶剂。在这里,我们全面回顾了先前关于电池相关 IL 1-丁基-1-甲基吡咯烷双(三氟甲磺酰基)亚胺 ([BMP][TFSI]) 与一系列结构和化学性质明确的模型电极表面相互作用的模型研究结果,这些模型表面越来越复杂,与电池应用相关 [Ag(111)、Au(111)、Cu(111)、原始和锂化高取向热解石墨 (HOPG) 和锐钛矿 TiO(110)]。本工作结合表面科学技术,如高分辨率扫描隧道显微镜和 X 射线光电子能谱,用于表征沉积 (亚)单层吸附层中的表面结构和化学成分,以及基于色散校正密度泛函理论的计算,旨在从分子尺度理解电极 | 电解质界面的基本过程,这对于开发所谓的固体电解质界面 (SEI) 层至关重要。在理想条件下,即在超高真空环境中进行的这些模型研究提供了有关吸附层中结构形成、导致这种结构形成的基底-吸附物和吸附物-吸附物相互作用以及 IL 化学诱导分解趋势的详细见解。为了模拟电解质中的情况,我们还研究了吸附 IL (亚)单层与共吸附锂的相互作用。即使在 80 K 下,也发现后沉积的 Li 与 IL 反应,导致形成 LiF、LiN、LiS、LiSO 和 LiO 等分解产物。在没有 [BMP][TFSI] 吸附层的情况下,它倾向于吸附、溶解或嵌入基底 (金属、HOPG) 或与基底 (TiO) 反应(在超过临界温度时),在后一种情况下形成 LiO 和 Ti 物种。最后,发现稳定分解产物的形成会敏感地改变表面 Li 与体相嵌入 Li 之间的平衡,导致在存在吸附 IL 吸附层的情况下从 lithiated HOPG 中脱嵌,>230 K。总的来说,这些结果提供了对固体 | 电解质界面表面化学和电极表面 SEI 形成初始阶段的详细了解,这对于进一步提高未来锂离子电池的性能至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验