Hestenes Julia C, Sadowski Jerzy T, May Richard, Marbella Lauren E
Program of Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York10027, United States.
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York11973, United States.
ACS Mater Au. 2022 Nov 10;3(2):88-101. doi: 10.1021/acsmaterialsau.2c00060. eCollection 2023 Mar 8.
The high-voltage LiNiMnO (LNMO) spinel cathode material offers high energy density storage capabilities without the use of costly Co that is prevalent in other Li-ion battery chemistries (e.g., LiNiMnCoO (NMC)). Unfortunately, LNMO-containing batteries suffer from poor cycling performance because of the intrinsically coupled processes of electrolyte oxidation and transition metal dissolution that occurs at high voltage. In this work, we use operando electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies to demonstrate that transition metal dissolution in LNMO is tightly coupled to HF formation (and thus, electrolyte oxidation reactions as detected with operando and in situ solution NMR), indicative of an acid-driven disproportionation reaction that occurs during delithiation (i.e., battery charging). Leveraging the temporal resolution (s-min) of magnetic resonance, we find that the LNMO particles accelerate the rate of LiPF decomposition and subsequent Mn dissolution, possibly due to the acidic nature of terminal Mn-OH groups. X-ray photoemission electron microscopy (XPEEM) provides surface-sensitive and localized X-ray absorption spectroscopy (XAS) measurements, in addition to X-ray photoelectron spectroscopy (XPS), that indicate disproportionation is enabled by surface reconstruction upon charging, which leads to surface Mn sites on the LNMO particle surface that can disproportionate into Mn and Mn. During discharge of the battery, we observe high quantities of metal fluorides (in particular, MnF) in the cathode electrolyte interphase (CEI) on LNMO as well as the conductive carbon additives in the composite. Electronic conductivity measurements indicate that the MnF decreases film conductivity by threefold compared to LiF, suggesting that this CEI component may impede both the ionic and electronic properties of the cathode. Ultimately, to prevent transition metal dissolution and the associated side reactions in spinel-type cathodes (particularly those that operate at high voltages like LNMO), the use of electrolytes that offer improved anodic stability and prevent acid byproducts will likely be necessary.
高压LiNiMnO(LNMO)尖晶石正极材料具有高能量密度存储能力,且无需使用在其他锂离子电池化学体系(如LiNiMnCoO(NMC))中普遍存在的昂贵钴。不幸的是,含LNMO的电池循环性能较差,这是由于在高电压下发生的电解质氧化和过渡金属溶解的内在耦合过程所致。在这项工作中,我们使用操作电子顺磁共振(EPR)和核磁共振(NMR)光谱来证明LNMO中的过渡金属溶解与HF形成紧密耦合(因此,如通过操作和原位溶液NMR检测到的电解质氧化反应),这表明在脱锂过程(即电池充电)中发生了酸驱动的歧化反应。利用磁共振的时间分辨率(秒-分钟),我们发现LNMO颗粒加速了LiPF的分解速率和随后的Mn溶解,这可能是由于末端Mn-OH基团的酸性性质。除了X射线光电子能谱(XPS)外,X射线光发射电子显微镜(XPEEM)还提供表面敏感和局部的X射线吸收光谱(XAS)测量,表明充电时的表面重构使歧化得以发生,这导致LNMO颗粒表面出现可歧化为Mn和Mn的表面Mn位点。在电池放电过程中,我们在LNMO上的阴极电解质界面(CEI)以及复合材料中的导电碳添加剂中观察到大量金属氟化物(特别是MnF)。电子电导率测量表明,与LiF相比,MnF使薄膜电导率降低了三倍,这表明该CEI组分可能会阻碍阴极的离子和电子性能。最终,为了防止尖晶石型阴极(特别是那些像LNMO一样在高电压下运行的阴极)中的过渡金属溶解和相关的副反应,可能需要使用具有更高阳极稳定性并能防止酸性副产物的电解质。