Suppr超能文献

通过在微图案化金基底上进行电聚合生成的仿生玫瑰花瓣状基底

Bioinspired Rose-Petal-Like Substrates Generated by Electropolymerization on Micropatterned Gold Substrates.

作者信息

Darmanin Thierry, Bombera Radoslaw, Colpo Pascal, Valsesia Andrea, Laugier Jean-Pierre, Rossi François, Guittard Frédéric

机构信息

Université Nice Sophia Antipolis, CNRS, LPMC, UMR 7336, 06100, Nice, France.

European Commission, DG Joint Research Centre, TP125, Via Fermi, 21027, Ispra, Italy.

出版信息

Chempluschem. 2017 Mar;82(3):352-357. doi: 10.1002/cplu.201600387. Epub 2016 Oct 12.

Abstract

Surfaces with high water-adhesion properties are promising materials for different applications in the field of water treatment and management, such as for water-harvesting systems or oil/water separation membranes. Herein, we developed rose-petal-like substrates that demonstrate interesting parahydrophobic character. This bioinspired material mimics the natural substrate thanks to a combination of two fabrication steps: (1) micropatterning to create a microstructured gold-coated substrate consisting of square pillars and (2) an electropolymerization process generating nanostructures over the micropillars. Judicious choice of the micropatterning specifications (pillar diameter and pitch), the type of electropolymerizable monomer, and the electrochemical parameters produces a material with both extremely high water contact angles (up to 160°), while retaining a remarkably high water-adhesion level. Our study suggests that a composite interface is expressed by the existence of the Wenzel state on the micropillars and the Cassie-Baxter state between the pillars ("Cassie-filled nanostructure"), as observed during our contact-angle measurements. Indeed, we show that the pitch should be small to obtain the optimal micropillar surface density. Moreover, a relatively low deposition charge of approximately 50 mC cm is preferable for coating the square pillars exclusively with nanostructures.

摘要

具有高水粘附特性的表面是用于水处理和管理领域不同应用的有前景的材料,例如用于集水系统或油水分离膜。在此,我们开发了呈现出有趣的超疏水特性的玫瑰花瓣状基底。这种受生物启发的材料通过两个制造步骤的组合来模仿天然基底:(1)微图案化以创建由方柱组成的微结构化金涂层基底,以及(2)在微柱上产生纳米结构的电聚合过程。对微图案化规格(柱直径和间距)、可电聚合单体的类型以及电化学参数的明智选择产生了一种材料,该材料具有极高的水接触角(高达160°),同时保持非常高的水粘附水平。我们的研究表明,如在我们的接触角测量中所观察到的,复合界面由微柱上的文策尔状态和柱之间的卡西 - 巴克斯特状态(“卡西填充纳米结构”)的存在来表示。确实,我们表明间距应该小以获得最佳的微柱表面密度。此外,对于仅用纳米结构涂覆方柱而言,约50 mC cm的相对较低的沉积电荷是优选的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验