Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore 560012, India.
Department of Physics, Indian Institute of Science, Bangalore 560012, India.
Phys Rev E. 2019 Dec;100(6-1):062609. doi: 10.1103/PhysRevE.100.062609.
In a classic paper, Purcell [Proc. Natl. Acad. Sci. U. S. A. 94, 11307 (1997)10.1073/pnas.94.21.11307] analyzed the dynamics of flagellated bacterial swimmers and derived a geometrical relationship which maximizes the propulsion efficiency. Experimental measurements for wild-type bacterial species E. coli have revealed that they closely satisfy this geometric optimality. However, dependence of the flagellar motor speed on the load and more generally the role of the torque-speed characteristics of the flagellar motor are not considered in Purcell's original analysis. Here we derive a tuned condition representing a match between the flagella geometry and the torque-speed characteristics of the flagellar motor to maximize the bacterial swimming speed for a given load. This condition is independent of the geometric optimality condition derived by Purcell. Interestingly, this condition is not satisfied by wild-type E. coli which swims 2-3 times slower than the maximum possible speed given the amount of available motor torque. Finally, we present experimental data on swimming dynamics of a cargo laden bacterial system which follows our analytical model. Our analysis also reveals the existence of an anomalous propulsion regime where the swim speed increases with increasing load (drag).
在一篇经典论文中,Purcell [Proc. Natl. Acad. Sci. U. S. A. 94, 11307 (1997)10.1073/pnas.94.21.11307] 分析了鞭毛细菌游泳者的动力学,并推导出了一个能最大化推进效率的几何关系。对野生型细菌大肠杆菌的实验测量表明,它们非常接近这种几何最优性。然而,Purcell 的原始分析并没有考虑到鞭毛马达速度对负载的依赖性,更普遍地说,也没有考虑到鞭毛马达的扭矩-速度特性的作用。在这里,我们推导出一个调谐条件,代表了鞭毛几何形状和鞭毛马达的扭矩-速度特性之间的匹配,以在给定负载下最大化细菌的游泳速度。这个条件与 Purcell 推导出的几何最优性条件无关。有趣的是,野生型大肠杆菌并不满足这个条件,它的游泳速度比在给定的可用马达扭矩下的最大可能速度慢 2-3 倍。最后,我们展示了关于负载细菌系统游泳动力学的实验数据,该数据符合我们的分析模型。我们的分析还揭示了存在一个异常推进状态,其中游泳速度随负载(阻力)的增加而增加。