Suppr超能文献

新月柄杆菌游动细胞的低鞭毛马达扭矩和高游动效率。

Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells.

作者信息

Li Guanglai, Tang Jay X

机构信息

Physics Department, Brown University, Providence, Rhode Island, USA.

出版信息

Biophys J. 2006 Oct 1;91(7):2726-34. doi: 10.1529/biophysj.106.080697. Epub 2006 Jul 14.

Abstract

We determined the torque of the flagellar motor of Caulobacter crescentus for different motor rotation rates by measuring the rotation rate and swimming speed of the cell body and found it to be remarkably different from that of other bacteria, such as Escherichia coli and Vibrio alginolyticus. The average stall torque of the Caulobacter flagellar motor was approximately 350 pN nm, much smaller than the values of the other bacteria measured. Furthermore, the torque of the motor remained constant in the range of rotation rates up to those of freely swimming cells. In contrast, the torque of a freely swimming cell for V. alginolyticus is typically approximately 20% of the stall torque. We derive from these results that the C. crescentus swarmer cells swim more efficiently than both E. coli and V. alginolyticus. Our findings suggest that C. crescentus is optimally adapted to low nutrient aquatic environments.

摘要

我们通过测量新月柄杆菌细胞体的旋转速率和游动速度,确定了不同马达旋转速率下新月柄杆菌鞭毛马达的扭矩,发现其与其他细菌(如大肠杆菌和溶藻弧菌)的扭矩显著不同。新月柄杆菌鞭毛马达的平均失速扭矩约为350皮牛·纳米,远小于所测量的其他细菌的值。此外,在直至自由游动细胞的旋转速率范围内,马达的扭矩保持恒定。相比之下,溶藻弧菌自由游动细胞的扭矩通常约为失速扭矩的20%。从这些结果我们得出,新月柄杆菌的游动细胞比大肠杆菌和溶藻弧菌游动得更高效。我们的发现表明,新月柄杆菌最适合低营养的水生环境。

相似文献

1
Low flagellar motor torque and high swimming efficiency of Caulobacter crescentus swarmer cells.
Biophys J. 2006 Oct 1;91(7):2726-34. doi: 10.1529/biophysj.106.080697. Epub 2006 Jul 14.
2
Flagellar Motor Switching in Caulobacter Crescentus Obeys First Passage Time Statistics.
Phys Rev Lett. 2015 Nov 6;115(19):198103. doi: 10.1103/PhysRevLett.115.198103. Epub 2015 Nov 5.
3
Torque generated by the flagellar motor of Escherichia coli while driven backward.
Biophys J. 1999 Jan;76(1 Pt 1):580-7. doi: 10.1016/S0006-3495(99)77226-7.
4
Study of the torque of the bacterial flagellar motor using a rotating electric field.
Biophys J. 1993 Mar;64(3):925-33. doi: 10.1016/S0006-3495(93)81454-1.
5
Effect of FliG three amino acids deletion in Vibrio polar-flagellar rotation and formation.
J Biochem. 2015 Dec;158(6):523-9. doi: 10.1093/jb/mvv068. Epub 2015 Jul 3.
6
The asymmetric flagellar distribution and motility of Escherichia coli.
J Mol Biol. 2010 Apr 9;397(4):906-16. doi: 10.1016/j.jmb.2010.02.008. Epub 2010 Feb 13.
7
Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli.
J Mol Biol. 2008 Mar 7;376(5):1251-9. doi: 10.1016/j.jmb.2007.12.023. Epub 2007 Dec 15.
8
An Element of Determinism in a Stochastic Flagellar Motor Switch.
PLoS One. 2015 Nov 10;10(11):e0141654. doi: 10.1371/journal.pone.0141654. eCollection 2015.
9
Simultaneous measurement of bacterial flagellar rotation rate and swimming speed.
Biophys J. 1995 Nov;69(5):2154-62. doi: 10.1016/S0006-3495(95)80089-5.
10

引用本文的文献

1
Torque-speed relationship of the flagellar motor with dual-stator systems in .
mBio. 2024 Dec 11;15(12):e0074524. doi: 10.1128/mbio.00745-24. Epub 2024 Oct 30.
2
Decoding the hydrodynamic properties of microscale helical propellers from Brownian fluctuations.
Proc Natl Acad Sci U S A. 2023 May 30;120(22):e2220033120. doi: 10.1073/pnas.2220033120. Epub 2023 May 26.
3
Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology.
J Bacteriol. 2023 Feb 22;205(2):e0038422. doi: 10.1128/jb.00384-22. Epub 2023 Jan 30.
4
A one-dimensional three-state run-and-tumble model with a 'cell cycle'.
Eur Phys J E Soft Matter. 2022 Oct 19;45(10):83. doi: 10.1140/epje/s10189-022-00238-7.
6
A new mode of swimming in singly flagellated .
Proc Natl Acad Sci U S A. 2022 Apr 5;119(14):e2120508119. doi: 10.1073/pnas.2120508119. Epub 2022 Mar 29.
7
The bank of swimming organisms at the micron scale (BOSO-Micro).
PLoS One. 2021 Jun 10;16(6):e0252291. doi: 10.1371/journal.pone.0252291. eCollection 2021.
8
The Structure, Composition, and Role of Periplasmic Stator Scaffolds in Polar Bacterial Flagellar Motors.
Front Microbiol. 2021 Mar 11;12:639490. doi: 10.3389/fmicb.2021.639490. eCollection 2021.
9
In situ structure of the Caulobacter crescentus flagellar motor and visualization of binding of a CheY-homolog.
Mol Microbiol. 2020 Sep;114(3):443-453. doi: 10.1111/mmi.14525. Epub 2020 May 25.
10
Spirochete Flagella and Motility.
Biomolecules. 2020 Apr 4;10(4):550. doi: 10.3390/biom10040550.

本文引用的文献

1
The influence of cell size on marine bacterial motility and energetics.
Microb Ecol. 1991 Dec;22(1):227-38. doi: 10.1007/BF02540225.
2
The energetics and scaling of search strategies in bacteria.
Am Nat. 2002 Dec;160(6):727-40. doi: 10.1086/343874.
3
The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11.
Proc Natl Acad Sci U S A. 2006 May 23;103(21):8066-71. doi: 10.1073/pnas.0509932103. Epub 2006 May 12.
4
Improvement in motion efficiency of the spirochete Brachyspira pilosicoli in viscous environments.
Biophys J. 2006 Apr 15;90(8):3019-26. doi: 10.1529/biophysj.105.074336. Epub 2006 Jan 13.
5
Direct observation of steps in rotation of the bacterial flagellar motor.
Nature. 2005 Oct 6;437(7060):916-9. doi: 10.1038/nature04003.
6
Deformation of a helical filament by flow and electric or magnetic fields.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Feb;71(2 Pt 1):021914. doi: 10.1103/PhysRevE.71.021914. Epub 2005 Feb 28.
8
BIOLOGICAL PROPERTIES AND CLASSIFICATION OF THE CAULOBACTER GROUP.
Bacteriol Rev. 1964 Sep;28(3):231-95. doi: 10.1128/br.28.3.231-295.1964.
9
Flagellar movement driven by proton translocation.
FEBS Lett. 2003 Jun 12;545(1):86-95. doi: 10.1016/s0014-5793(03)00397-1.
10
Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus.
J Mol Biol. 2003 Apr 11;327(5):1043-51. doi: 10.1016/s0022-2836(03)00176-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验