Suppr超能文献

随机共振在非平衡系统中的应用。

Stochastic resonance for nonequilibrium systems.

机构信息

Centre for the Mathematics of Planet Earth, University of Reading, Reading RG66AX, United Kingdom; Department of Mathematics and Statistics, University of Reading, Reading RG66AX, United Kingdom; and CEN, University of Hamburg, Hamburg 20144, Germany.

出版信息

Phys Rev E. 2019 Dec;100(6-1):062124. doi: 10.1103/PhysRevE.100.062124.

Abstract

Stochastic resonance (SR) is a prominent phenomenon in many natural and engineered noisy systems, whereby the response to a periodic forcing is greatly amplified when the intensity of the noise is tuned to within a specific range of values. We propose here a general mathematical framework based on large deviation theory and, specifically, on the theory of quasipotentials, for describing SR in noisy N-dimensional nonequilibrium systems possessing two metastable states and undergoing a periodically modulated forcing. The drift and the volatility fields of the equations of motion can be fairly general, and the competing attractors of the deterministic dynamics and the edge state living on the basin boundary can, in principle, feature chaotic dynamics. Similarly, the perturbation field of the forcing can be fairly general. Our approach is able to recover as special cases the classical results previously presented in the literature for systems obeying detailed balance and allows for expressing the parameters describing SR and the statistics of residence times in the two-state approximation in terms of the unperturbed drift field, the volatility field, and the perturbation field. We clarify which specific properties of the forcing are relevant for amplifying or suppressing SR in a system and classify forcings according to classes of equivalence. Our results indicate a route for a detailed understanding of SR in rather general systems.

摘要

随机共振(SR)是许多自然和工程噪声系统中的一个突出现象,即在噪声强度调谐到特定值范围内时,周期性强迫的响应会大大增强。我们在这里提出了一个基于大偏差理论的一般数学框架,特别是基于准势理论,用于描述具有两个亚稳状态且经历周期性调制强迫的噪声 N 维非平衡系统中的 SR。运动方程的漂移和波动场可以相当一般,并且确定性动力学的竞争吸引子和在基态边界上存在的边缘状态在原则上可以具有混沌动力学。类似地,强迫的微扰场可以相当一般。我们的方法能够以系统遵守详细平衡的情况下以前在文献中提出的经典结果作为特例来恢复,并允许以未受扰的漂移场、波动场和微扰场来表示描述 SR 的参数和在两态近似中的停留时间的统计数据。我们澄清了强迫中哪些特定性质对系统中的 SR 放大或抑制是相关的,并根据等效类对强迫进行分类。我们的结果表明了一种理解相当一般系统中的 SR 的详细途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验