Suppr超能文献

直接驱动双壳层内爆:燃烧等离子体物理研究的平台。

Direct-drive double-shell implosion: A platform for burning-plasma physics studies.

机构信息

Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623, USA.

General Atomics, San Diego, California 92121, USA.

出版信息

Phys Rev E. 2019 Dec;100(6-1):063204. doi: 10.1103/PhysRevE.100.063204.

Abstract

Double-shell ignition designs have been studied with the indirect-drive inertial confinement fusion (ICF) scheme in both simulations and experiments in which the inner-shell kinetic energy was limited to ∼10-15 kJ, even driven by megajoule-class lasers such as the National Ignition Facility. Since direct-drive ICF can couple more energy to the imploding shells, we have performed a detailed study on direct-drive double-shell (D^{3}S) implosions with state-of-the-art physics models implemented in radiation-hydrodynamic codes (lilac and draco), including nonlocal thermal transport, cross-beam energy transfer (CBET), and first-principles-based material properties. To mitigate classical unstable interfaces, we have proposed the use of a tungsten-beryllium-mixed inner shell with gradient-density layers that can be made by magnetron sputtering. In our D^{3}S designs, a 70-μm-thick beryllium outer shell is driven symmetrically by a high-adiabat (α≥10), 1.9-MJ laser pulse to a peak velocity of ∼240 km/s. Upon spherical impact, the outer shell transfers ∼30-40 kJ of kinetic energy to the inner shell filled with deuterium-tritium gas or liquid, giving neutron-yield energies of ∼6 MJ in one-dimensional simulations. Two-dimensional high-mode draco simulations indicated that such high-adiabat D^{3}S implosions are not susceptible to laser imprint, but the long-wavelength perturbations from the laser port configuration along with CBET can be detrimental to the target performance. Nevertheless, neutron yields of ∼0.3-1.0-MJ energies can still be obtained from our high-mode draco simulations. The robust α-particle bootstrap is readily reached, which could provide a viable platform for burning-plasma physics studies. Once CBET mitigation and/or more laser energy becomes available, we anticipate that break-even or moderate energy gain might be feasible with the proposed D^{3}S scheme.

摘要

双壳层点火设计已在间接驱动惯性约束聚变(ICF)方案的模拟和实验中进行了研究,其中内壳层的动能被限制在约 10-15kJ,即使使用兆焦耳级的激光,如国家点火装置。由于直接驱动 ICF 可以将更多的能量耦合到内爆壳层,我们已经使用辐射流体动力学代码(lilac 和 draco)中实现的最先进的物理模型对直接驱动双壳层(D^{3}S)内爆进行了详细研究,包括非局部热输运、束间能量转移(CBET)和基于第一性原理的材料性质。为了减轻经典不稳定界面,我们提出使用钨-铍混合的内壳层,其梯度密度层可以通过磁控溅射制成。在我们的 D^{3}S 设计中,一个 70μm 厚的铍外壳由一个高绝热(α≥10)、1.9MJ 激光脉冲对称驱动,达到约 240km/s 的峰值速度。在球形撞击时,外壳将约 30-40kJ 的动能传递给充满氘-氚气体或液体的内壳层,在一维模拟中产生约 6MJ 的中子能。二维高模式 draco 模拟表明,这种高绝热 D^{3}S 内爆不容易受到激光印记的影响,但来自激光端口配置的长波长扰动以及 CBET 可能对目标性能有害。尽管如此,从我们的高模式 draco 模拟中仍可以获得约 0.3-1.0MJ 能量的中子产额。α 粒子自举很容易达到,这可为燃烧等离子体物理研究提供一个可行的平台。一旦 CBET 得到缓解和/或更多的激光能量可用,我们预计,使用所提出的 D^{3}S 方案,实现平衡或适度的能量增益可能是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验