Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623, USA.
General Atomics, San Diego, California 92121, USA.
Phys Rev E. 2019 Dec;100(6-1):063204. doi: 10.1103/PhysRevE.100.063204.
Double-shell ignition designs have been studied with the indirect-drive inertial confinement fusion (ICF) scheme in both simulations and experiments in which the inner-shell kinetic energy was limited to ∼10-15 kJ, even driven by megajoule-class lasers such as the National Ignition Facility. Since direct-drive ICF can couple more energy to the imploding shells, we have performed a detailed study on direct-drive double-shell (D^{3}S) implosions with state-of-the-art physics models implemented in radiation-hydrodynamic codes (lilac and draco), including nonlocal thermal transport, cross-beam energy transfer (CBET), and first-principles-based material properties. To mitigate classical unstable interfaces, we have proposed the use of a tungsten-beryllium-mixed inner shell with gradient-density layers that can be made by magnetron sputtering. In our D^{3}S designs, a 70-μm-thick beryllium outer shell is driven symmetrically by a high-adiabat (α≥10), 1.9-MJ laser pulse to a peak velocity of ∼240 km/s. Upon spherical impact, the outer shell transfers ∼30-40 kJ of kinetic energy to the inner shell filled with deuterium-tritium gas or liquid, giving neutron-yield energies of ∼6 MJ in one-dimensional simulations. Two-dimensional high-mode draco simulations indicated that such high-adiabat D^{3}S implosions are not susceptible to laser imprint, but the long-wavelength perturbations from the laser port configuration along with CBET can be detrimental to the target performance. Nevertheless, neutron yields of ∼0.3-1.0-MJ energies can still be obtained from our high-mode draco simulations. The robust α-particle bootstrap is readily reached, which could provide a viable platform for burning-plasma physics studies. Once CBET mitigation and/or more laser energy becomes available, we anticipate that break-even or moderate energy gain might be feasible with the proposed D^{3}S scheme.
双壳层点火设计已在间接驱动惯性约束聚变(ICF)方案的模拟和实验中进行了研究,其中内壳层的动能被限制在约 10-15kJ,即使使用兆焦耳级的激光,如国家点火装置。由于直接驱动 ICF 可以将更多的能量耦合到内爆壳层,我们已经使用辐射流体动力学代码(lilac 和 draco)中实现的最先进的物理模型对直接驱动双壳层(D^{3}S)内爆进行了详细研究,包括非局部热输运、束间能量转移(CBET)和基于第一性原理的材料性质。为了减轻经典不稳定界面,我们提出使用钨-铍混合的内壳层,其梯度密度层可以通过磁控溅射制成。在我们的 D^{3}S 设计中,一个 70μm 厚的铍外壳由一个高绝热(α≥10)、1.9MJ 激光脉冲对称驱动,达到约 240km/s 的峰值速度。在球形撞击时,外壳将约 30-40kJ 的动能传递给充满氘-氚气体或液体的内壳层,在一维模拟中产生约 6MJ 的中子能。二维高模式 draco 模拟表明,这种高绝热 D^{3}S 内爆不容易受到激光印记的影响,但来自激光端口配置的长波长扰动以及 CBET 可能对目标性能有害。尽管如此,从我们的高模式 draco 模拟中仍可以获得约 0.3-1.0MJ 能量的中子产额。α 粒子自举很容易达到,这可为燃烧等离子体物理研究提供一个可行的平台。一旦 CBET 得到缓解和/或更多的激光能量可用,我们预计,使用所提出的 D^{3}S 方案,实现平衡或适度的能量增益可能是可行的。