Suppr超能文献

在具有能量局域化的周期性驱动单粒子体系中,Floquet-Magnus 展开的发散。

Divergence of the Floquet-Magnus expansion in a periodically driven one-body system with energy localization.

机构信息

Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan.

出版信息

Phys Rev E. 2019 Dec;100(6-1):062138. doi: 10.1103/PhysRevE.100.062138.

Abstract

The Floquet-Magnus expansion is a useful tool to calculate an effective Hamiltonian for periodically driven systems. In this study, we investigate the convergence of the expansion for a one-body nonlinear system in a continuous space, a driven anharmonic oscillator. In this model, all eigenstates of the time-evolution operator are found to be localized in energy space, and the expectation value of the energy is bounded from above. We first propose a general procedure to estimate the radius of convergence of the Floquet-Magnus expansion for periodically driven systems with an unbounded energy spectrum. By applying it to the driven anharmonic oscillator, we numerically show that the expansion diverges for all driving frequencies even if the anharmonicity is arbitrarily small. This conclusion contradicts the widely accepted belief that the divergence of the Floquet-Magnus expansion is a direct consequence of quantum ergodicity, which implies that each eigenstate of the time-evolution operator is a linear combination of all available eigenstates of the unperturbed Hamiltonian and the system heats up to infinite temperature after long intervals.

摘要

Floquet-Magnus 展开是计算周期性驱动系统有效哈密顿量的有用工具。在这项研究中,我们研究了连续空间中单粒子非线性系统的展开的收敛性,即驱动非谐振荡器。在这个模型中,发现时间演化算子的所有本征态在能量空间中都是局域的,并且能量的期望值有界。我们首先提出了一种估计具有无界能谱的周期性驱动系统的 Floquet-Magnus 展开的收敛半径的一般方法。通过将其应用于驱动非谐振荡器,我们数值上表明,即使非谐性任意小,对于所有驱动频率,展开都会发散。这个结论与广泛接受的观点相矛盾,即 Floquet-Magnus 展开的发散是量子遍历性的直接结果,这意味着时间演化算子的每个本征态都是未受扰哈密顿量的所有本征态的线性组合,并且系统在长时间间隔后会升温到无限温度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验