Key Laboratory of Aerospace Advanced Materials and Performance of Ministry of Education, School of Materials Science and Engineering, Beihang University, Beijing, China.
Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
Nature. 2020 Jan;577(7791):492-496. doi: 10.1038/s41586-019-1904-x. Epub 2020 Jan 22.
Although two-dimensional (2D) atomic layers, such as transition-metal chalcogenides, have been widely synthesized using techniques such as exfoliation and vapour-phase growth, it is still challenging to obtain phase-controlled 2D structures. Here we demonstrate an effective synthesis strategy via the progressive transformation of non-van der Waals (non-vdW) solids to 2D vdW transition-metal chalcogenide layers with identified 2H (trigonal prismatic)/1T (octahedral) phases. The transformation, achieved by exposing non-vdW solids to chalcogen vapours, can be controlled using the enthalpies and vapour pressures of the reaction products. Heteroatom-substituted (such as yttrium and phosphorus) transition-metal chalcogenides can also be synthesized in this way, thus enabling a generic synthesis approach to engineering phase-selected 2D transition-metal chalcogenide structures with good stability at high temperatures (up to 1,373 kelvin) and achieving high-throughput production of monolayers. We anticipate that these 2D transition-metal chalcogenides will have broad applications for electronics, catalysis and energy storage.
尽管二维(2D)原子层,如过渡金属硫属化物,可以通过剥离和气相生长等技术广泛合成,但获得具有相控的 2D 结构仍然具有挑战性。在这里,我们通过逐步将非范德华(非 vdW)固体转化为具有确定的 2H(三角棱柱)/1T(八面体)相的二维 vdW 过渡金属硫属化物层,展示了一种有效的合成策略。通过将非 vdW 固体暴露于硫属蒸气,可以使用反应产物的焓和蒸气压来控制转化。通过这种方式还可以合成杂原子取代的(如钇和磷)过渡金属硫属化物,从而实现了一种通用的合成方法,可用于工程相选择的二维过渡金属硫属化物结构,这些结构在高温(高达 1373 开尔文)下具有良好的稳定性,并实现了单层的高通量生产。我们预计这些二维过渡金属硫属化物将在电子、催化和储能方面有广泛的应用。