Suppr超能文献

铌碲相变材料:打破二维范德华过渡金属二元硫族化物中的相变温度平衡

NbTe Phase-Change Material: Breaking the Phase-Change Temperature Balance in 2D Van der Waals Transition-Metal Binary Chalcogenide.

作者信息

Shuang Yi, Chen Qian, Kim Mihyeon, Wang Yinli, Saito Yuta, Hatayama Shogo, Fons Paul, Ando Daisuke, Kubo Momoji, Sutou Yuji

机构信息

WPI Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan.

New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.

出版信息

Adv Mater. 2023 Sep;35(39):e2303646. doi: 10.1002/adma.202303646. Epub 2023 Jul 30.

Abstract

2D van der Waals (vdW) transition metal di-chalcogenides (TMDs) have garnered significant attention in the nonvolatile memory field for their tunable electrical properties, scalability, and potential for phase engineering. However, their complex switching mechanism and complicated fabrication methods pose challenges for mass production. Sputtering is a promising technique for large-area 2D vdW TMD fabrication, but the high melting point (typically T > 1000 °C) of TMDs requires elevated temperatures for good crystallinity. This study focuses on the low-T 2D vdW TM tetra-chalcogenides and identifies NbTe as a promising candidate with an ultra-low T of around 447 °C (onset temperature). As-grown NbTe forms an amorphous phase upon deposition that can be crystallized by annealing at temperatures above 272 °C. The simultaneous presence of a low T and a high crystallization temperature T can resolve important issues facing current phase-change memory compounds, such as high Reset energies and poor thermal stability of the amorphous phase. Therefore, NbTe holds great promise as a potential solution to these issues.

摘要

二维范德华(vdW)过渡金属二硫属化物(TMDs)因其可调节的电学性质、可扩展性以及相工程潜力,在非易失性存储领域备受关注。然而,其复杂的开关机制和复杂的制造方法给大规模生产带来了挑战。溅射是一种用于大面积二维vdW TMD制造的有前景的技术,但TMDs的高熔点(通常T>1000°C)需要高温才能获得良好的结晶度。本研究聚焦于低熔点二维vdW TM四硫属化物,并确定NbTe是一种有前景的候选材料,其超低熔点约为447°C(起始温度)。生长态的NbTe在沉积时形成非晶相,可通过在272°C以上的温度退火使其结晶。低熔点和高结晶温度T的同时存在可以解决当前相变存储化合物面临的重要问题,如高复位能量和非晶相热稳定性差等问题。因此,NbTe有望成为解决这些问题的潜在方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验